Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Noncontractive uniformly Lipshitzian semigroups in Hilbert space

Author: Daryl Tingley
Journal: Proc. Amer. Math. Soc. 92 (1984), 355-361
MSC: Primary 47H10
MathSciNet review: 759652
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that any $ k$-Lipshitzian, $ k < \pi /2$, noncontractive commutative semigroup acting on a closed bounded convex set in Hilbert space has a common fixed point.

References [Enhancements On Off] (What's this?)

  • [1] J. B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach. I, Séminaire d'Analyse Fonctionnelle de l'Ecole Polytechnique, no. VII, 1978-1979. MR 557363 (81d:47036)
  • [2] L. M. Blumenthal, Theory and applications of distance geometry, Oxford Univ. Press, London, 1953. MR 0054981 (14:1009a)
  • [3] D. J. Downing and W. O. Ray, Uniformly Lipshitzian semigroups in Hilbert space, Canad. Math. Bull. 25 (1982), 210-213. MR 663616 (84e:47066)
  • [4] K. Goebel, W. A. Kirk and R. L. Thele, Uniformly Lipshitzian families of transformations in Banach spaces, Canad. J. Math. 26 (1974), 1245-1256. MR 0358453 (50:10919)
  • [5] V. Klee, Circumspheres and inner products, Math. Scand. 8 (1980), 363-370. MR 0125432 (23:A2734)
  • [6] T. C. Lim, Fixed point theorems for uniformly Lipshitzian mappings in $ {L^p}$ spaces, J. Nonlinear Analysis (to appear).
  • [7] -, Some inequalities and their applications to fixed point theorems of uniformly Lipshitzian mappings in $ {L^p}$ spaces, preprint.
  • [8] J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Springer-Verlag, Berlin, 1975. MR 0461107 (57:1092)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10

Retrieve articles in all journals with MSC: 47H10

Additional Information

Keywords: Fixed point, uniformly $ k$-Lipshitzian, noncontractive
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society