Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On existence of oscillatory solutions for a second order sublinear differential equation


Author: James S. W. Wong
Journal: Proc. Amer. Math. Soc. 92 (1984), 367-371
MSC: Primary 34C15
DOI: https://doi.org/10.1090/S0002-9939-1984-0759654-3
MathSciNet review: 759654
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A result on the existence of oscillatory solutions for the second order sublinear differential equation $ y'' + a(t){\left\vert y \right\vert^\gamma }\operatorname{sgn} y = 0$, $ 0 < \gamma < 1$, where $ a(t)$ is positive and continuous, is given. This supplements a well-known result of Hinton for the superlinear case, i.e. $ \gamma > 1$.


References [Enhancements On Off] (What's this?)

  • [1] S. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat. Fyz. Časopis Sloven. Akad. Vied 11 (1961), 250-255.
  • [2] -, On some properties of the equation $ y''(x) + f(x){y^\alpha }(x) = 0$, $ 0 < \alpha < 1$, Mat. Fyz. Časopis Sloven. Akad. Vied 17 (1967), 10-19. MR 0214854 (35:5703)
  • [3] C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119-130. MR 0333337 (48:11662)
  • [4] -, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equation, Trans. Amer. Math. Soc. 167 (1972), 399-434. MR 0296413 (45:5473)
  • [5] L. H. Erbe, Oscillation and nonoscillation properties of second order nonlinear differential equations, Proc. Equadiff. Z2 (Wurzburg) 1983 (to appear).
  • [6] L. H. Erbe & J. S. Muldowney, On the existence of oscillatory solutions to nonlinear differential equations, Ann. Mat. Pura Appl. 59 (1976), 23-37. MR 0481254 (58:1380)
  • [7] -, Nonoscillation results for second order nonlinear differential equations, Rocky Mountain J. Math. 12 (1982), 635-642. MR 683858 (84a:34031)
  • [8] D. B. Hinton, An oscillation criterion for solutions of $ (ry')' + q{y^\gamma } = 0$, Michigan Math. J. 16 (1969), 349-352. MR 0249728 (40:2969)
  • [9] M. Jasny, On the existence of an oscillatory solution of the nonlinear differential equation of the second order $ y'' + f(x){y^{2m - 1}} = 0$, $ f(x) > 0$, Časopis Pěst. Mat. 85 (1960), 78-83. MR 0142840 (26:408)
  • [10] I. T. Kiguradze, On the oscillatory and monotone solutions of ordinary differential equations, Arch. Math. 1 (Brno) 14 (1978), 21-44. MR 512742 (80b:34031)
  • [11] T. Kura, Oscillation theorems for a second order sublinear ordinary differential equations, Proc. Amer. Math. Soc. 84 (1982), 535-538. MR 643744 (83b:34044)
  • [12] J. Kurzweil, A note on oscillatory solutions of the equation $ y'' + f(x){y^{2n - 1}} = 0$, Časopis Pěst. Mat. 85 (1960), 357-358. MR 0126025 (23:A3322)
  • [13] M. K. Kwong and J. S. W. Wong, On the oscillation and nonoscillation of second order sublinear equations, Proc. Amer. Math. Soc. 85 (1982), 547-551. MR 660602 (84g:34060)
  • [14] -, Nonoscillation theorems for a second order sublinear ordinary differential equation, Proc. Amer. Math. Soc. 87 (1983), 467-474. MR 684641 (84b:34039)
  • [15] -, On an oscillation theorem of Belohorec, SIAM J. Math. Anal. 14 (1983), 474-476. MR 697523 (84g:34061)
  • [16] Z. Nehari, On a class of nonlinear second order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-103. MR 0111898 (22:2756)
  • [17] -, A nonlinear oscillation problem, J. Differential Equations 5 (1969), 452-460. MR 0235203 (38:3514)
  • [18] -, A nonlinear oscillation theorem, Duke Math. J. 42 (1975), 183-189. MR 0387723 (52:8562)
  • [19] H. Onose, On Butler's conjecture for oscillation of an ordinary differential equation, Quart. J. Math. Oxford Ser. (2) 34 (1983), 235-239. MR 698209 (85b:34043)
  • [20] D. Willett and J. S. W. Wong, On the discrete analogues of some generalizations of Gronwall's inequality, Monatsh. Math. 69 (1965), 362-367. MR 0185175 (32:2644)
  • [21] J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339-360. MR 0367368 (51:3610)
  • [22] -, Remarks on nonoscillation theorem for a second order nonlinear differential equation, Proc. Amer. Math. Soc. 83 (1981), 541-546. MR 627687 (82i:34034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C15

Retrieve articles in all journals with MSC: 34C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0759654-3
Keywords: Second order, nonlinear, differential equations, oscillation
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society