Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An integral formula for multidimensional evolution equations


Author: E. C. Svendsen
Journal: Proc. Amer. Math. Soc. 92 (1984), 385-390
MSC: Primary 47D05; Secondary 35K22
DOI: https://doi.org/10.1090/S0002-9939-1984-0759658-0
MathSciNet review: 759658
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper contains an integral formula for the one-parameter semigroup generated by a sum of contractions of operator-valued tensors. The formula expresses the semigroup in terms of the semigroups generated by the quadratic forms associated with the tensors. It is used to construct solutions of some wave and diffusion equations from solutions of related lower-dimensional equations.


References [Enhancements On Off] (What's this?)

  • [1] P. R. Chernoff, Note on product formulas for operator semigroups, J. Funct. Anal. 2 (1968), 238-242. MR 0231238 (37:6793)
  • [2] J. A. Goldstein, Cosine functions and the Feynman-Kac formula, Quart. J. Math. Oxford Ser. (2) 33 (1982), 303-307. MR 668176 (83j:35079)
  • [3] T. G. Kurtz, A random Trotter product formula, Proc. Amer. Math. Soc. 35 (1972), 147-154. MR 0303347 (46:2484)
  • [4] M. L. Lapidus, Generalization of the Trotter-Lie formula, Integral Equations Operator Theory 4 (1981), 366-415. MR 623544 (83e:47057)
  • [5] H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10 (1959), 545-551. MR 0108732 (21:7446)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 35K22

Retrieve articles in all journals with MSC: 47D05, 35K22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0759658-0
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society