An integral formula for multidimensional evolution equations
Author:
E. C. Svendsen
Journal:
Proc. Amer. Math. Soc. 92 (1984), 385-390
MSC:
Primary 47D05; Secondary 35K22
DOI:
https://doi.org/10.1090/S0002-9939-1984-0759658-0
MathSciNet review:
759658
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: This paper contains an integral formula for the one-parameter semigroup generated by a sum of contractions of operator-valued tensors. The formula expresses the semigroup in terms of the semigroups generated by the quadratic forms associated with the tensors. It is used to construct solutions of some wave and diffusion equations from solutions of related lower-dimensional equations.
- [1] P. R. Chernoff, Note on product formulas for operator semigroups, J. Funct. Anal. 2 (1968), 238-242. MR 0231238 (37:6793)
- [2] J. A. Goldstein, Cosine functions and the Feynman-Kac formula, Quart. J. Math. Oxford Ser. (2) 33 (1982), 303-307. MR 668176 (83j:35079)
- [3] T. G. Kurtz, A random Trotter product formula, Proc. Amer. Math. Soc. 35 (1972), 147-154. MR 0303347 (46:2484)
- [4] M. L. Lapidus, Generalization of the Trotter-Lie formula, Integral Equations Operator Theory 4 (1981), 366-415. MR 623544 (83e:47057)
- [5] H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10 (1959), 545-551. MR 0108732 (21:7446)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 35K22
Retrieve articles in all journals with MSC: 47D05, 35K22
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1984-0759658-0
Article copyright:
© Copyright 1984
American Mathematical Society