DOUBLE COMMUTANTS OF OPERATORS
QUASI-SIMILAR TO NORMAL OPERATORS

KATSUTOSHI TAKAHASHI

Abstract. It is shown that double commutants of operators quasi-similar to normal operators are reflexive.

An algebra \mathcal{A} of bounded linear operators on a Hilbert space is said to be reflexive if $\mathcal{A} = \text{Alg Lat } \mathcal{A}$, where Lat \mathcal{A} denotes the family of all subspaces invariant under all elements of \mathcal{A} and Alg Lat \mathcal{A} is the algebra of all operators X for which $XM \subseteq M$ for every $M \in \text{Lat }\mathcal{A}$. If \mathcal{A} is a von Neumann algebra, then $M \in \text{Lat }\mathcal{A}$ means that the projection to M belongs to the commutant \mathcal{A}', therefore Alg Lat \mathcal{A} coincides with the double commutant \mathcal{A}''. Thus the von Neumann double commutant theorem can be rephrased as follows (cf. [4, Theorem 9.17]): every von Neumann algebra is reflexive.

Recall some definitions. For operators T_1 and T_2, let us write $T_1 \prec T_2$ (resp. $T_1 \prec T_2$) to denote that there exists a quasi-affinity, i.e. injection with dense range (resp. an injection) X such that $XT_1 = T_2X$. T_1 and T_2 are quasi-similar by definition if $T_1 \prec T_2$ and $T_2 \prec T_1$.

If N is a normal operator, the commutant $\{N\}'$ becomes a von Neumann algebra by the Fuglede theorem, so that both the commutant and the double commutant $\{N\}''$ are reflexive. If an operator T is quasi-similar to a normal operator N, the commutant $\{T\}'$ is reflexive because the reflexivity of commutant is preserved under quasi-similarity [1] and $\{N\}'$ is reflexive. In this note we shall show that the double commutant $\{T\}''$ is reflexive too.

Theorem. If an operator T is quasi-similar to a normal operator N, then the double commutant $\{T\}''$ is reflexive.

Before going into the proof, let us present an immediate consequence.

Corollary. If T is a contraction of class C_{11}, that is, $\lim_{n \to \infty} \|T^n x\| \neq 0$ and $\lim_{n \to \infty} \|T^n x\| \neq 0$ for every nonzero x, then the double commutant $\{T\}''$ is reflexive.

In fact, it is well known that a contraction of class C_{11} is quasi-similar to a unitary operator (see [5, Proposition II.3.5]).
This result for a C_{11}-contraction T was proved in [3, Theorem 3] under the condition that every injection in $(T)'$ has dense range.

For the proof of the theorem we need a lemma, which is an analog of [3, Lemma 5] for C_{11}-contractions.

LEMMA. Let T be an operator quasi-similar to a normal operator. Then, for $\mathcal{M} \in \text{Lat } T$ (i.e., the family of all T-invariant subspaces), the following conditions are mutually equivalent.

(i) $T|\mathcal{M}$ is quasi-similar to a normal operator.

(ii) $T|\mathcal{M} \succ N_1$ for some normal operator N_1.

(iii) $\mathcal{M} = (\text{ran } Z)'$ for some $Z \in \{T\}'$.

If one of these conditions holds, then $\mathcal{M} \in \text{Lat } \{T\}'$.

Proof. Let X and Y be quasi-affinities such that $XT = NX$ and $TY = YN$ for some normal operator N on \mathcal{H}. (i) \Rightarrow (ii) is trivial.

(ii) \Rightarrow (iii): Since $N_1 < T|\mathcal{M} < N(X\mathcal{M})^{-}$, it follows from [2, Lemma 4.1] that $(X\mathcal{M})^{-}$ is N-reducing and $N(X\mathcal{M})^{-}$ is unitarily equivalent to N_1. Therefore we have $(T|\mathcal{M})^* < N_1^* < N^*(X\mathcal{M})^{-} < N^* < T^*$. Denote by W the injection from \mathcal{M} to \mathcal{H} (the space on which T acts) such that $W(T|\mathcal{M})^* = T^*W$, and by J the inclusion mapping of \mathcal{M} into \mathcal{H}. Then $Z = JW^*$ is an operator required in (iii).

(iii) \Rightarrow (i): Define an operator K from \mathcal{H} to \mathcal{M} by $Kx = ZYx$ for $x \in \mathcal{H}$. Then K has dense range and $(T|\mathcal{M})K = KN$. Also $(X\mathcal{M})(T|\mathcal{M}) = N(X\mathcal{M})$ and $X\mathcal{M}$ is injective. Therefore it follows from [2, Lemma 4.1] that $N(\text{ker } K)^+$ and $N(X\mathcal{M})^{-}$ are unitarily equivalent normal operators, and so $T|\mathcal{M}$ is quasi-similar to a normal operator $N(X\mathcal{M})^{-}$. Finally it is clear that $\mathcal{M} \in \text{Lat } \{T\}'$ for any subspace \mathcal{M} satisfying (iii).

Proof of Theorem. By assumption there are quasi-affinities X and Y satisfying $XT = NX$ and $TY = YN$. Without loss of generality, the product XY can be assumed to be nonnegative. Indeed, since $XY \in \{N\}'$, XY admits the polar factorization $XY = UP$ in the von Neumann algebra $\{N\}'$, where U is unitary and P is nonnegative. The quasi-affinities U^*X and Y satisfy the required condition.

The inclusion $\{T\}' \subseteq \text{Alg } \text{Lat } \{T\}'$ is obvious. To see the converse inclusion, take $A \in \text{Alg } \text{Lat } \{T\}'$. In order to show $A \in \{T\}'$, it suffices to prove that A commutes with YCX for all $C \in \{N\}'$. In fact, then A commutes with YX, and also with $YXBYX$ for any $B \in \{T\}'$, because XY belongs to $\{N\}'$. Therefore we have

$$YXBYX = YXBYXA = AYXBYX = YXABYX.$$

Then the quasi-affinity properties of X and Y imply $BA = AB$, hence $A \in \{T\}'$.

Let us show that A commutes with YCX for all $C \in \{N\}'$. Since $\{N\}'$ is a von Neumann algebra, we have only to show that $A(YHX) = (YHX)A$ for any selfadjoint injection $H \in \{N\}'$. Take $\mathcal{M} \in \text{Lat } \{XYHX\}'$. Since $\{N\}' \subseteq \{XYHX\}'$, we have $\mathcal{M} \in \text{Lat } \{N\}'$, hence \mathcal{M} is N-reducing and $N|\mathcal{M}$ is normal. Then, since $(Y\mathcal{M})^{-} \subseteq \text{Lat } T$ and $T(Y\mathcal{M})^{-} \succ N|\mathcal{M}$, it follows from the Lemma that $(Y\mathcal{M})^{-} \subseteq \text{Lat } \{T\}' \subseteq \text{Lat } A$, and so $XYHXAY \mathcal{M} \subseteq (XYHX\mathcal{M})^{-} \subseteq \mathcal{M}$. We can conclude that $XYHXAY \in \text{Alg } \text{Lat } \{XYHX\}'$. Then, since the commutant $\{XYHX\}'$ of the
selfadjoint operator $XYHXY$ is reflexive, $XYHXY \in \{ XYHXY \}'$. Taking $H = I$, we have $(XY)^2 XY A Y = XYA Y (XY)^2$ and $(XY)^2 X A Y = X A Y (XY)^2$ by the injectivity of XY. Since XY is assumed to be nonnegative, taking the square root of $(XY)^2$, we obtain $XYA Y = XA Y XY$. Then for any selfadjoint injection H we have

$$XYHXYXYHXY = XYHXYXYHXY = XYHXYXYHXY.$$

Finally it follows from the injectivity of $XYHXY$ and the dense range property of Y that $YHA Y = A Y H X$.

REFERENCES