Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An integral inequality for the disc multiplier

Author: A. Córdoba
Journal: Proc. Amer. Math. Soc. 92 (1984), 407-408
MSC: Primary 42B15; Secondary 35S05
MathSciNet review: 759664
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper an integral inequality is proved for the Bochner-Riesz operators in dimension two. This inequality expresses how those operators are controlled by maximal functions associated to families of rectangles with an appropriate number of directions.

References [Enhancements On Off] (What's this?)

  • [1] A. Córdoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977). MR 0447949 (56:6259)
  • [2] -, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979). MR 544242 (80m:42025)
  • [3] -, The multiplier problem for the polygon, Ann. of Math. (2) 105 (1977). MR 0438022 (55:10943)
  • [4] A. Cordoba and B. Lopez-Melero, Spherical summation: a problem of E. M. Stein, Ann. Inst. Fourier (Grenoble) 31 (1981), fasc. 3. MR 638621 (83g:42008)
  • [5] J. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Lecture Notes in Math., vol. 908, Springer-Verlag, Berlin and New York, 1982. MR 654181 (83h:42025)
  • [6] E. M. Stein, Some problems in harmonic analysis, Proc. Sympos. Pure Math., Vol. 35, Part 1, Amer. Math. Soc., Providence, R. I., 1978, pp. 3-20. MR 545235 (80m:42027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15, 35S05

Retrieve articles in all journals with MSC: 42B15, 35S05

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society