Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A simple evaluation of Askey and Wilson's $ q$-beta integral

Author: Mizan Rahman
Journal: Proc. Amer. Math. Soc. 92 (1984), 413-417
MSC: Primary 33A15; Secondary 05A30
MathSciNet review: 759666
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By using the well-known sum of $ _2{\phi _1}\left( {a,b;c;c/ab} \right)$ and Sears' identity for the sum of two nonterminating balanced $ _3{\phi _2}$ series, a simple evaluation is given for Askey and Wilson's $ q$-beta type integral

$\displaystyle \int_{ - 1}^1 {\frac{{h(x;1)h(x; - 1)h(x;\sqrt q )h(x: - \sqrt {q)} }}{{h(x;a)h(x;b)h(x;c)h(x;d)}}} \frac{{dx}}{{\sqrt {1 - {x^2}} }},$

where $ \max \left( {\left\vert q \right\vert,\left\vert a \right\vert,\left\vert b \right\vert,\left\vert c \right\vert,\left\vert d \right\vert < 1} \right)$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33A15, 05A30

Retrieve articles in all journals with MSC: 33A15, 05A30

Additional Information

Keywords: $ q$-beta integral, $ q$-binomial theorems, Sears' identity, Askey and Wilson's integral
Article copyright: © Copyright 1984 American Mathematical Society