Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homeomorphism groups and homogeneous spaces


Author: Jan van Mill
Journal: Proc. Amer. Math. Soc. 92 (1984), 449-454
MSC: Primary 54C35; Secondary 54F20, 54H10
DOI: https://doi.org/10.1090/S0002-9939-1984-0759672-5
MathSciNet review: 759672
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the $ 2$-sphere $ {S^2}$ can be decomposed into two sets $ A$ and $ B$ such that (1) both $ A$ and $ B$ are connected, locally connected, dense and Baire, (2) both $ A$ and $ B$ are (much more than) topologically homogeneous, (3) $ A$ is not homeomorphic to $ B$, and (4) the autohomeomorphism groups of $ A$ and $ B$ are (algebraically) isomorphic.


References [Enhancements On Off] (What's this?)

  • [1] D. W. Curtis and J. van Mill, Zero-dimensional countable dense unions of $ Z$-sets in the Hilbert cube, Fund. Math. 118 (1983), 103-108. MR 732658 (86a:57011)
  • [2] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 0193606 (33:1824)
  • [3] N. J. Fine and G. E. Schweigert, On the group of homeomorphisms of an arc, Ann. of Math. 62 (1955), 237-253. MR 0072460 (17:288b)
  • [4] M. Gerstenhaber, Canonical constructions. I, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 233-236. MR 0074417 (17:581c)
  • [5] -, Canonical constructions. II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 881-883. MR 0084499 (18:870d)
  • [6] -, Canonical constructions. IV, Proc. Amer. Math. Soc. 8 (1957), 745-749. MR 0132787 (24:A2623)
  • [7] J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc. 84 (1982), 143-148. MR 633296 (83e:54033)
  • [8] J. van Mill and E. Wattel, Partitioning spaces in homeomorphic rigid parts, Colloq. Math. (to appear). MR 818090 (87d:54060)
  • [9] M. Rubin, On the reconstruction of topological spaces from their groups of homeomorphisms, Trans. Amer. Math. Soc. (to appear). MR 988881 (90g:54044)
  • [10] M. T. Wechsler, Homeomorphism groups of certain topological spaces, Ann. of Math. 62 (1955), 360-373. MR 0072453 (17:287d)
  • [11] J. V. Whittaker, On isomorphic groups and homeomorphic spaces, Ann. of Math. 78 (1963), 74-91. MR 0150750 (27:737)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C35, 54F20, 54H10

Retrieve articles in all journals with MSC: 54C35, 54F20, 54H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0759672-5
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society