Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extension of entire functions on nuclear locally convex spaces


Authors: Reinhold Meise and Dietmar Vogt
Journal: Proc. Amer. Math. Soc. 92 (1984), 495-500
MSC: Primary 46G20; Secondary 46A12, 46E10
DOI: https://doi.org/10.1090/S0002-9939-1984-0760932-2
MathSciNet review: 760932
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for a nuclear locally convex complex vector space every entire function is the pull-back of some entire function on an appropriate Banach space if and only if the entire functions on $ E$ have the following universal extension property: whenever $ E$ is a topological linear subspace of a locally convex space $ F$ with a fundamental system of seminorms induced by semi-inner products, then every entire function $ f$ on $ E$ can be extended to an entire function on $ F$.


References [Enhancements On Off] (What's this?)

  • [1] K.-D. Bierstedt, R. G. Meise and W. H. Summers, Köthe sets and Köthe sequence spaces, 'Functional Analysis, Holomorphy and Approximation Theory', (J. A. Barroso, Ed.), North-Holland Math. Stud. 71, North-Holland, Amsterdam, 1982. MR 691159 (84f:46011)
  • [2] P. J. Boland, Holomorphic functions on nuclear spaces, Trans. Amer. Math. Soc. 209 (1975), 275-281. MR 0388094 (52:8931)
  • [3] J. F. Colombeau, Differential calculus and holomorphy, North-Holland Math. Stud. 65, North-Holland, Amsterdam, 1982. MR 671252 (84i:46005)
  • [4] J. F. Colombeau and J. Mujica, Holomorphic and differentiable mappings of uniform bounded type, Functional Analysis, Holomorphy and Approximation Theory, (J. A. Barroso, Ed.), North-Holland Math. Stud. 71, North-Holland, Amsterdam, 1982, pp. 179-200. MR 691163 (84h:46055)
  • [5] S. Dineen, Complex analysis in locally convex spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. MR 640093 (84b:46050)
  • [6] R. Meise and D. Vogt, Counterexamples in holomorphic functions on nuclear Fréchet spaces, Math. Z. 182 (1983), 167-177. MR 689294 (84m:46048)
  • [7] -, Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces, preprint.
  • [8] L. Nachbin, Uniformité d'holomorphie et type exponentiel, Séminaire Lelong 1969/70, Lecture Notes in Math., vol. 205, Springer-Verlag, Berlin and New York, 1971, pp. 216-224. MR 0380404 (52:1304)
  • [9] A. Pietsch, Nuclear locally convex spaces, Ergeb. Math. 66, Springer-Verlag, Berlin and New York, 1972. MR 0350360 (50:2853)
  • [10] H. H. Schaefer, Topological vector spaces, Springer-Verlag, Berlin and New York, 1971. MR 0342978 (49:7722)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G20, 46A12, 46E10

Retrieve articles in all journals with MSC: 46G20, 46A12, 46E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0760932-2
Keywords: Entire functions of uniformly bounded type, extension of entire functions, nuclear locally convex spaces
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society