Compact endomorphisms and closed ideals in Banach algebras

Author:
Sandy Grabiner

Journal:
Proc. Amer. Math. Soc. **92** (1984), 547-548

MSC:
Primary 46H05; Secondary 46J05, 47A15

DOI:
https://doi.org/10.1090/S0002-9939-1984-0760943-7

MathSciNet review:
760943

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Every infinite-dimensional Banach algebra with a nonzero compact endomorphism has a proper closed nonzero two-sided ideal. When the algebra is commutative, the ideal is also an ideal in the multiplier algebra.

**[1]**J. Esterle,*Quasimultipliers, representations of*,*and the closed ideal problem*, Radical Banach Algebras and Automatic Continuity (J. Bachar et al., eds.), Lecture Notes in Math., vol. 975, Springer-Verlag, Berlin, 1983, pp. 66-162. MR**697579 (85g:46067)****[2]**C K. Fong et al.,*Extensions of Lomonosov's invariant subspace theorem*, Acta Sci. Math. (Szeged)**41**(1979), 55-62. MR**534499 (80h:47006)****[3]**S. Grabiner,*Derivations and automorphisms of Banach algebras of power series*, Mem. Amer. Math. Soc. No. 146 (1974). MR**0415321 (54:3410)****[4]**-,*Operator ranges and invariant subspaces*, Indiana Univ. Math. J.**28**(1979), 845-857. MR**542341 (81b:47006)****[5]**H. Kamowitz,*Compact endomorphisms of Banach algebras*, Pacific J. Math.**89**(1980), 313-325. MR**599123 (82c:46063)****[6]**V. Lomonosov,*Invariant subspaces for operators which commute with a completely continuous operator*, Funct. Anal. Appl.**7**(1973), 213-214. MR**0420305 (54:8319)****[7]**C. Pearcy and A. L. Shields,*A survey of the Lomonosov technique in the theory of invariant subspaces*, Topics in Operator Theory (C. Pearcy, ed.), Math. Surveys, vol. 13, Amer. Math. Soc., Providence, R. I., 1974. MR**0355639 (50:8113)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46H05,
46J05,
47A15

Retrieve articles in all journals with MSC: 46H05, 46J05, 47A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0760943-7

Article copyright:
© Copyright 1984
American Mathematical Society