NORMAL SUBGROUPS OF $\text{Diff}^\Omega(\mathbb{R}^3)$

FRANCISCA MASCARO

ABSTRACT. Let Ω be a volume element on \mathbb{R}^3 of infinite total Ω-volume. We denote by $\text{Diff}^\Omega(\mathbb{R}^3)$ the group of all Ω-preserving diffeomorphisms of \mathbb{R}^3, by $\text{Diff}_c^\Omega(\mathbb{R}^3)$ the subgroup of all elements with compact support and by $\text{Diff}_f^\Omega(\mathbb{R}^3)$ the subgroup of all elements whose support has finite Ω-volume.

We prove that there is no normal subgroup between $\text{Diff}_c^\Omega(\mathbb{R}^3)$ and $\text{Diff}_f^\Omega(\mathbb{R}^3)$.

In my paper Normal subgroups of $\text{Diff}^\Omega(\mathbb{R}^n)$ [5], I studied the normal subgroups of $\text{Diff}^\Omega(\mathbb{R}^n)$ for $n \geq 4$, Ω being any volume element on \mathbb{R}^n. All results in the paper hold for $n = 3$ except Lemma 4.4. Thus we know that the normal subgroup of $\text{Diff}^\Omega(\mathbb{R}^3)$ of all elements compactly Ω-isotopic to the identity, $\text{Diff}_c^\Omega(\mathbb{R}^3)$, is simple, and there is a maximal proper normal subgroup of $\text{Diff}^\Omega(\mathbb{R}^3)$, $\text{Diff}_f^\Omega(\mathbb{R}^3)$, the subgroup of all elements with set of nonfixed points of finite Ω-volume.

The purpose of this paper is to prove a modification of Lemma 4.4 of [5] for $n = 3$, getting, as a consequence, that there is no normal subgroup between $\text{Diff}_c^\Omega(\mathbb{R}^3)$ and $\text{Diff}_f^\Omega(\mathbb{R}^3)$.

The importance of Lemma 4.4 is given by the fact that the basic method for understanding the normal subgroups is to factor a diffeomorphism into a product of diffeomorphisms whose support is well-controlled and then to manipulate this support using techniques of [2].

I would like to thank Dusa McDuff for her many suggestions and Jose Maria Montesinos for his comments on a previous version of this note.

Let us start by giving some definitions on infinite links.

DEFINITION. Let $\bigcup_{i \geq 1} \alpha_i, \bigcup_{i \geq 1} \beta_i$ be two locally finite sets of disjoint smooth paths in \mathbb{R}^3 such that $\alpha_i \cap \beta_j = \emptyset$ if $i \neq j$ and

$$\alpha_i \cap \beta_i = (\alpha_i(0) = \beta_i(0)) \cup (\alpha_i(1) = \beta_i(1)).$$

Let $p: \mathbb{R}^3 \to \mathbb{R}^2 \times \{0\}$ given by $p(x,y,z) = (x,y,0)$ be the parallel projection.

We call a crossing of the link $L = \bigcup_{i \geq 1} \alpha_i \cup \bigcup_{i \geq 1} \beta_i$ the set of points $p^{-1}(c)$, where c is a multiple point of $p|_L$. When no confusion is possible we also call the point c a crossing.

Since every differentiable knot is equivalent to one in regular position, and since in L we have a locally finite sequence of differentiable paths, we can assume that all crossings are double. Let c be a double point of $p|_L$. We call c' the point of $p^{-1}(c)$ with larger z-coordinate and c'' the other one.

Now, we have two different types of crossings:

(a) $p^{-1}(c) \subset \alpha_i \cup \alpha_j$ or $p^{-1}(c) \subset \beta_i \cup \beta_j$.

Received by the editors February 18, 1983 and, in revised form, January 24, 1984.
1980 Mathematics Subject Classification. Primary 57R50, 58A10; Secondary 57M25.

©1984 American Mathematical Society
0002-9939/84 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
DEFINITION. A crossing $p^{-1}(c)$ is an overcrossing and we denote it by “O” in the following cases:

(i) Type (a): if c' lies in α_i when $i < j$ or if we first find c' when α_i is traversed from $\alpha_i(0)$ to $\alpha_i(1)$ if $i = j$; similarly if $p^{-1}(c) \subset \beta_i \cup \beta_j$.

(ii) Type (b): if c' lies in α_i when $i \leq j$ or in β_j when $j < i$.

Otherwise, we call a crossing an undercrossing and we denote it by “U”.

We now prove

Lemma. Let L be as above. There are smooth paths $\bigsqcup_{i \geq 1} \alpha'_i$, $\bigsqcup_{i \geq 1} \beta'_i$ such that α'_i is very near α_i and β'_i is very near β_i, $\alpha'_i \cap \beta'_j = \emptyset$ if $i \neq j$, $\alpha'_i \cap \beta'_i = (\alpha'_i(0) = \beta'_i(0)) \cup (\alpha'_i(1) = \beta'_i(1))$, and all crossings of $(\bigsqcup_{i \geq 1} \alpha'_i) \cup (\bigsqcup_{i \geq 1} \beta'_i)$ are overcrossings.

Proof. We define α'_i, β'_i inductively on i.

α'_i, β'_i are different from α_i, β_i only in a chosen neighbourhood of each undercrossing $U = p^{-1}(c)$ where α'_i and β'_i are defined as follows.
(I) U is of type (a). On a neighbourhood of c', α'_j (resp. β'_j) goes vertically (in the z-direction) under α_i (resp. β_i) instead of over. On a neighbourhood of c'', α'_i (resp. β'_i) is the same as α_i (resp. β_i) (see Figure 2).

(II) U is of type (b). α'_i is α_i. On a neighbourhood of c', β'_i goes vertically (in the z-direction) under α_i instead of over it if $i \leq j$; if $i > j$, on a neighbourhood of c'', β'_i goes vertically (also in the z-direction) over α_i instead of under.

Thus, all crossings of $\bigsqcup_{i \geq 1} \alpha'_i \cup \bigsqcup_{i \geq 1} \beta'_i$ are overcrossings.

Remark. We know by McDuff [6] that the loops $\alpha_i \cup \alpha'_i$ and $\beta_i \cup \beta'_i$ are both unknotted for any i.

Furthermore, notice that the infinite link $\bigsqcup_{i \geq 1} \alpha'_i \cup \bigsqcup_{i \geq 1} \beta'_i$ constructed above is untangled in the sense that it is diffeomorphic to the standard one.

Figure 4
Before proving Lemma 4.4 for \(n = 3 \) we will define a strip.

DEFINITION. A strip in \(\mathbb{R}^3 \) is the image under some diffeomorphism of \(\mathbb{R}^3 \), \(g \), of the tube \(\{(x, y, z) \in \mathbb{R}^3: x > 0, y^2 + z^2 \leq 1\} \).

Notice that a strip may have finite \(\Omega \)-volume since \(g \) may not be volume preserving.

We now state and prove Lemma 4.4 for \(n = 3 \).

THEOREM. Let \(f \) be any volume element of \(\text{Diff}^\Omega(\mathbb{R}^3) \) with support in a strip \(V \) of infinite \(\Omega \)-volume. Then \(f = f_1 \circ f_2 \circ f_3 \circ f_4 \circ f_5 \circ f_6 \), where \(f_i \) lies in \(\text{Diff}^\Omega(\mathbb{R}^3) \) and has support in a strip \(V_i \) of finite \(\Omega \)-volume.

PROOF. As in Lemma 4.4 of [5] we get a disjoint union of closed balls \(\bigsqcup_{i \geq 1} B_i \subset \text{int} V - \text{supp} f \) such that \(\text{vol}_\Omega(V - \bigsqcup_{i \geq 1} B_i) < \infty \). We can join each ball \(B_i \) to \(\partial V \) by an unknotted smooth path \(\alpha_i \) in \(V \) satisfying:

(i) The set \(\{\alpha_i\} \) is locally finite.

(ii) \(\alpha_i \cap \alpha_j = \emptyset \) if \(i \neq j \).

(iii) \(\alpha_i \cap \beta_j = \emptyset \) if \(i \neq j \) and \(\alpha_i \cap B_i = \alpha_i(1) \). Also, we can get \(f_1 \), a volume preserving diffeomorphism with support in a strip of finite \(\Omega \)-volume such that \(f_1^{-1} \circ f(\alpha_i) \cap \alpha_j = \emptyset \) for any \(i \neq j \) and \(f_1^{-1} \circ f(\alpha_i) \) and \(\alpha_i \) only meet on a connected neighbourhood of its endpoints.

We consider now the infinite link \(L = \bigsqcup_{i \geq 1} \alpha_i \cup \bigsqcup_{i \geq 1} \beta_i \), where \(\beta_i = f_1^{-1} \circ f(\alpha_i) \), and we apply the Lemma to it. So we get, for any \(i \), \(\alpha'_i = \alpha_i \) because the \(\alpha_i \) never cross each other and \(\bigsqcup_{i \geq 1} \beta'_i \), where \(\beta'_i \) is different from \(f_1^{-1} \circ f(\alpha_i) \) only in a small neighbourhood of each undercrossing. \(\bigsqcup_{i \geq 1} \alpha_i \cup \bigsqcup_{i \geq 1} \beta_i' \) is untangled and for any \(i \), \(\alpha_i \cup \beta'_i \) and \(\beta_i \cup \beta'_i \) are both unknotted.

Let \(\beta''_i \) be the path \(f_1^{-1} \circ f(\alpha_i) \) except near an undercrossing of type (b) where we have changed it to an overcrossing as in the Lemma. So there is a volume preserving diffeomorphism, \(f_2 \), with support in a disjoint union of cells of \(\Omega \)-volume as small as we like such that \(f_2^{-1}(\beta_i) = f_2^{-1} \circ f_1^{-1} \circ f(\alpha_i) = \beta''_i \).
Now we consider the link $\bigcup_{i \geq 1} \beta'_i \cup \bigcup_{i \geq 1} \beta''_i$. In the same way as in [6, Lemma 8], we can prove that the link $\bigcup_{i \geq 1} \beta'_i \cup \bigcup_{i \geq 1} \beta''_i$ is untangled, therefore, there is a volume preserving diffeomorphism, f_3^{-1}, with support in a disjoint union of cells of Ω-volume as small as we like such that $f_3^{-1}(\beta''_i) = \beta'_i$ for any i.

Now we can construct, inductively, pairwise disjoint embedded 2-dimensional open discs E_i such that $\partial E_i = \alpha_i \cup \beta'_i$ for any i. Also, there are smooth unknotted paths γ_i in $V - \bigcup_{i \geq 1} B_i - \bigcup_{i \geq 1} E_i$ joining $\alpha_i(0)$ and $\alpha_i(1)$, near α_i and such that each crossing of $\bigcup_{i \geq 1} \gamma_i \cup \bigcup_{i \geq 1} \beta'_i$ is an overcrossing. Thus, there are pairwise disjoint small neighbourhoods U_i of E_i in $V - \bigcup_{i \geq 1} B_i - \bigcup_{i \geq 1} \gamma_i$. Then, there is an isotopy $\theta: \bigcup_{i \geq 1} \alpha_i \times [0,1] \to \bigcup_{i \geq 1} U_i$ with θ_0 equal to the identity and θ_1 equal to $f_3^{-1} \circ f_2^{-1} \circ f_1^{-1} \circ f$.

Now, the proof follows as in Lemma 4.4 of [5].

COROLLARY. There is no normal subgroup between $\text{Diff}^\Omega_c(R^3)$ and $\text{Diff}^\Omega_f(R^3)$.

REFERENCES

DEPARTAMENTO DE GEOMETRIA Y TOPOLOGIA, FACULTAD DE MATEMATICAS, UNIVERSIDAD DE VALENCIA, BURJASOT, VALENCIA, SPAIN