Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On inner product spaces over Dedekind domains of characteristic two


Author: Richard C. Wagner
Journal: Proc. Amer. Math. Soc. 93 (1985), 1-9
MSC: Primary 11E88; Secondary 13F05, 15A63
DOI: https://doi.org/10.1090/S0002-9939-1985-0766516-5
MathSciNet review: 766516
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ D$ is a Dedekind domain of characteristic 2 and $ (M,\varphi )$ is an inner product space, i.e. $ M$ is a finitely generated projective $ D$ module supplied with a nonsingular symmetric bilinear form $ \varphi $. It is shown that $ (M,\varphi )$ is determined up to isometry by the extension of $ \varphi $ to $ F{ \otimes _D}M$, where $ F$ is the quotient field of $ D$, and the value module $ {\mathcal Q}(M)$ of all $ \varphi (m,m)$ for $ m$ in $ M$. In particular, a hyperbolic space $ {\mathbf{H}}(M)$ is completely determined by the rank of the finitely generated projective module $ M$. As consequences, genera coincide with isometry classes, and if $ {N_1}$ and $ {N_2}$ are isometric nonsingular submodules of $ (M,\varphi )$ such that $ {\mathcal Q}({N_1}^ \bot ) = {\mathcal Q}({N_2}^ \bot )$, then $ {N_1}^ \bot $ and $ {N_2}^ \bot $ are isometric. Also, given an $ F$ inner product space $ (V,\varphi )$ and a $ {D^{(2)}}$ submodule $ P$ of $ D$, a necessary and sufficient condition is given for the existence of a $ D$ inner product space $ (M,\Psi )$ such that $ (FM,\Psi ) \cong (V,\varphi )$ and $ {\mathcal Q}(M) = P$.


References [Enhancements On Off] (What's this?)

  • [1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 0144979 (26:2519)
  • [2] A. Frohlich, On the $ K$-theory of unimodular forms over rings of algebraic integers, Quart. J. Math. Oxford Ser. (2) 22 (1971), 401-423. MR 0296138 (45:5199)
  • [3] I. Kaplansky, Linear algebra and geometry, Allyn and Bacon, Boston, Mass., 1969. MR 0249444 (40:2689)
  • [4] M. Knebusch, Grothendieck und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 3 (1969/1970), 93-157. MR 0271118 (42:6001)
  • [5] J. Milnor, Symmetric inner products in characteristic 2, Prospects in Mathematics, Ann. of Math. Stud., No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 59-75. MR 0347866 (50:367)
  • [6] J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, Berlin and New York, 1973. MR 0506372 (58:22129)
  • [7] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, Berlin and New York, 1963.
  • [8] I. Reiner, Maximal orders, Academic Press, London, 1975. MR 1972204 (2004c:16026)
  • [9] A. Roy, Cancellation of quadratic forms over commutative rings, J. Algebra 10 (1968), 286-298. MR 0231844 (38:172)
  • [10] C. H. Sah, A note on Hermitian forms over fields of characteristic 2, Amer. J. Math. 86 (1964), 262-270. MR 0188234 (32:5673)
  • [11] R. C. Wagner, Some Witt cancellation theorems, Amer. J. Math. 94 (1972), 206-220. MR 0306238 (46:5364)
  • [12] -, On odd Hermitian forms, J. Algebra 58 (1979), 370-398. MR 540646 (81c:10025)
  • [13] G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1963), 1-62. MR 0150210 (27:212)
  • [14] O. Zariski and P. Samuel, Commutative algebra, Van Nostrand, Princeton, N.J., 1958. MR 0090581 (19:833e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11E88, 13F05, 15A63

Retrieve articles in all journals with MSC: 11E88, 13F05, 15A63


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0766516-5
Keywords: Symmetric bilinear forms, value modules, hyperbolic and metabolic spaces, Witt cancellation, genera, Dedekind and discrete valuation rings
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society