Symbolic powers of prime ideals and their topology

Author:
Peter Schenzel

Journal:
Proc. Amer. Math. Soc. **93** (1985), 15-20

MSC:
Primary 13C15; Secondary 13A17, 13H10, 13J99

DOI:
https://doi.org/10.1090/S0002-9939-1985-0766518-9

MathSciNet review:
766518

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a prime ideal of a commutative Noetherian ring a necessary and sufficient condition is given to determine when the -adic topology is equivalent, resp. linearly equivalent, to the -symbolic topology. The last means that the symbolic Rees ring is a finitely generated module over the ordinary Rees ring of . Then it is considered when the integral closure of all the powers of are primary.

**[1]**M. Brodmann,*Asymptotic stability of*, Proc. Amer. Math. Soc.**74**(1979), 16-18. MR**521865 (80c:13012)****[2]**-,*Finiteness of ideal transform*, J. Algebra**63**(1980), 162-185. MR**568570 (81g:13004)****[3]**R. Hartshorne,*Affine duality and cofiniteness*, Invent. Math.**9**(1970), 721-737. MR**0257096 (41:1750)****[4]**C. Huneke,*On the associated graded ring of an ideal*, Illinois J. Math.**26**(1982), 121-137. MR**638557 (83d:13029)****[5]**D. Katz,*Prime divisors, asymptotic**-sequences and unmixed local rings*, preprint.**[6]**S. McAdam,*Asymptotic prime divisors and analytic spreads*, Proc. Amer. Math. Soc.**80**(1980), 555-558. MR**587926 (81j:13015)****[7]**-,*Asymptotic prime divisors and going down*, Pacific J. Math.**91**(1980), 179-186. MR**612897 (82k:13019)****[8]**L. J. Ratliff, Jr.,*On prime divisors of*,*large*, Michigan Math. J.**23**(1976), 337-352. MR**0457421 (56:15626)****[9]**-,*On asymptotic prime divisors*, Pacific J. Math.**111**(1984), 395-413. MR**734863 (85c:13003)****[10]**D. Rees,*A note on analytically unramified local rings*, J. London Math Soc.**36**(1961), 24-28. MR**0126465 (23:A3761)****[11]**P. Schenzel,*Independent elements, unmixedness theorems and asymptotic prime divisors*, J. Algebra (to appear). MR**772477 (86c:13010)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13C15,
13A17,
13H10,
13J99

Retrieve articles in all journals with MSC: 13C15, 13A17, 13H10, 13J99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0766518-9

Keywords:
Prime ideal,
symbolic power,
asymptotic prime divisors,
integral closure,
Rees ring,
form ring

Article copyright:
© Copyright 1985
American Mathematical Society