Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Comparison of two methods of multiplying distributions


Author: Johan Tysk
Journal: Proc. Amer. Math. Soc. 93 (1985), 35-39
MSC: Primary 46F10
DOI: https://doi.org/10.1090/S0002-9939-1985-0766522-0
MathSciNet review: 766522
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There is no canonical way of defining a product of distributions. In the present paper we compare two different methods of defining a product of distributions. These methods are based on the sequential and functional-analytic approaches to distributions.


References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose, Products of distributions with values in distributions, J. Reine Angew. Math. 315 (1980), 73–91. MR 564525, https://doi.org/10.1515/crll.1980.315.73
  • [2] Piotr Antosik, Jan Mikusiński, and Roman Sikorski, Theory of distributions. The sequential approach, Elsevier Scientific Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw, 1973. MR 0365130
  • [3] L. Hörmander, Fourier integral operator. I, Acta Math. 127 (1971), 79-183.
  • [4] Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
    Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46F10

Retrieve articles in all journals with MSC: 46F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0766522-0
Keywords: Distribution, $ \delta $-sequence, Fourier transform, convolution
Article copyright: © Copyright 1985 American Mathematical Society