TOPOLOGICAL EQUIVALENCE IN THE SPACE OF INTEGRABLE VECTOR-VALUED FUNCTIONS

SEMION GUTMAN

Abstract. The Banach space \(L^1(0, T; X) \) is retopologized by \(\| f \| = \max_{0 \leq a < b \leq T} \int_a^b \| f(t) \| \, dt \), where \(\| \cdot \| \) is the norm in the given Banach space \(X \). It is shown here that this topology coincides with the usual weak topology of \(L^1(0, T; X) \) on a wide class of weakly compact subsets.

Let \(X \) be a Banach space and \(T > 0 \). Denote by \(L^1(0, T; X) \) the Banach space of all (Bochner) integrable functions (equivalence classes) on \([0, T] \) with the norm

\[
\| f \|_1 = \int_0^T \| f(\tau) \| \, d\tau,
\]

where \(\| \cdot \| \) is the norm in \(X \). \(L^1(0, T; X) \) can be retopologized with the weaker norm

\[
\| f \| = \max_{0 \leq a < b \leq T} \left\| \int_a^b f(\tau) \, d\tau \right\|.
\]

Denote this space by \(L^1(\| \cdot \|) \). Note that

\[
\| f \|_1 = \max_{0 \leq a < T} \left\| \int_a^T f(\tau) \, d\tau \right\|
\]

is an equivalent norm in \(L^1(\| \cdot \|) \). The space \(L^1(\| \cdot \|) \) was recently used to obtain existence results for some kinds of abstract differential equations (see e.g. [4], [5]). It was observed that subsets of the form

\[
\{ f \in L^1(0, T; X) : f(t) \in K \text{ almost everywhere on } [0, T] \}
\]

are compact in \(L^1(\| \cdot \|) \) if the set \(K \) is compact in \(X \). The main purpose of this note is to show that for a wide class of subsets of \(L^1(0, T; X) \) (particularly of the above type), the topology generated by \(\| \cdot \| \) coincides with the usual weak topology of \(L^1(0, T; X) \). On the connections between \(L^1(0, T; H) \) and \(L^1(\| \cdot \|) \), where \(H \) is a Hilbert space, see [5].

Definition. We say that a set \(F \subset L^1(0, T; X) \) has property (U) if:

(i) \(F \) is bounded and uniformly integrable.

(ii) For every \(\varepsilon > 0 \) there exists a compact set \(K_\varepsilon \subset X \) such that for every \(f \in F \) there exists a measurable set \(\Omega_{f,\varepsilon} \) with \(\mu([0, T] \setminus \Omega_{f,\varepsilon}) \leq \varepsilon \) and \(f(t) \in K_\varepsilon \) for \(t \in \Omega_{f,\varepsilon} \).

Received by the editors November 1, 1983, and, in revised form, February 23, 1984.

1980 Mathematics Subject Classification. Primary 46E40, 28B05.

Key words and phrases. Vector-valued functions, weak compactness, Banach spaces, topological equivalence.

©1985 American Mathematical Society

0002-9939/85$1.00 + $25 per page
Here \(\mu \) is the Lebesgue measure on \([0, T]\). On the property (U), see [1 and 3].

Recall that if we denote by \(l_1 \) the Banach space of all real summable sequences \(\{x_n\}^\infty_{n=1} \) with norm \(\|x\|_1 = \sum_{n=1}^{\infty} |x_n|_1 \), then the conjugate space \(m \) is the space of all real bounded sequences \(\{y_n\}^\infty_{n=1} \) with norm \(\|y\|_\infty = \sup_{n} |y_n|_1 \) where \(y = \{y_n\}^\infty_{n=1} \in m \). Let \(K \) be a compact set. Denote by \(C(K) \) the Banach space of all continuous functions on \(K \) with sup-norm \(|\cdot|_\infty \). The conjugate \((C(K))^* = M(K)\) is the Banach space of all Radon measures on \(K \). The conjugate \((L^1(0, T; X))^* \) is the space \(\Lambda(0, T; X^*) \) of all essentially bounded scalar measurable functions \(g : [0, T] \to X^* \), and every linear continuous functional on \(L^1(0, T; X) \) is given by

\[
\int_0^T (f(\tau), g(\tau)) \, d\tau,
\]

where \(f \in L^1(0, T; X) \), \(g \in \Lambda(0, T; X^*) \) and \((\cdot, \cdot)\) is the pairing between \(X \) and \(X^* \).

(See [2, 8.14–8.18].) Our main result is the following:

Theorem. Let \(X \) be a Banach space and \(T > 0 \). Let the set \(F \subseteq L^1(0, T; X) \) have property (U). Then the weak topology of \(L^1(0, T; X) \) and the topology of \(L^1(||\cdot||) \) coincide on \(F \). Moreover, \(F \) is relatively compact in \(L^1(||\cdot||) \).

Proof. Note that the set \(\bigcup_{k=1}^{\infty} K_{1/n} \) is separable in \(X \) (\(K_{1/n} \) is defined as in the Definition). Therefore \(F \) is separable in \(L^1(0, T; X) \) and we can suppose without loss of generality, that \(X \) is separable.

Let \(\{t_n\}^\infty_{n=1} \) be a dense sequence in \([0, T]\) and \(\{y^*_n\}^\infty_{n=1} \) a weak-star dense sequence in the unit ball \(S^* \) of \(X^* \). Let \(\chi[t_n, t_m] \) be a characteristic function of the interval \([t_n, t_m]\). Then the set of all the functions of the form \(y^*_n \cdot \chi[t_p, t_q], \, t_p < t_q, \) is countable. Denote these functions by \(\{\phi^*_n\}^\infty_{n=1} \). Then

\[
\|f\| = \sup_n \left| \int_0^T (f(\tau), \phi^*_n(\tau)) \, d\tau \right|.
\]

Define a linear continuous operator \(P : L^1(0, T; X) \to m \) by

\[
Pf = \left(\int_0^T (f(\tau), \phi^*_n(\tau)) \, d\tau \right)^\infty_{n=1}.
\]

Note that \(\|f\| = |Pf|_\infty \).

We will prove that \(P(F) \subseteq m \) is relatively (norm) compact in \(m \). Suppose there exists a compact set \(K \subseteq X \) such that \(F \subseteq F(K) = \{ f \in L^1(0, T; X) : f(\tau) \in K \) almost everywhere on \([0, T]\)\}. Recall that \(C(K) \) is the Banach space of continuous functions on \(K \), and define the operator \(\hat{P} : l_1 \to L^1(0, T; C(K)) \) by \(\hat{P}e_n = \phi^*_n \) on the standard basis \(\{e_n\}^\infty_{n=1} \) of \(l_1 \), and then extend it by linearity and continuity to all \(l_1 \). The set \(\{\phi^*_n\}^\infty_{n=1} \subseteq L^1(0, T; C(K)) \) is norm compact. This can be checked directly or by using the criterion of compactness in the spaces \(L^p(0, T; X) \) (see [3, Theorem A.1]). Thus \(\hat{P} \) is compact. Its dual, \(\hat{P}^* : (L^1(0, T; C(K)))^* \to m \), is also compact. Thus \(\hat{P}^* : \Lambda(0, T; M(K)) \to m \),

\[
\hat{P}^*g = \left(\int_0^T (\phi^*_n(\tau), g(\tau)) \, d\tau \right)^\infty_{n=1}.
\]
where the pairing (\cdot, \cdot) is
\[
(\phi_n(\tau), g(\tau)) = \int_K \phi_n(x, \tau) \, dg(x, \tau)
\]
for the measure $dg(x, \tau)$ corresponding to $g(\tau)$. In particular, if $g(\tau)$ is a Dirac measure for each $\tau \in [0, T]$ and $g(\tau)$ is concentrated at $f(\tau) \in K \subset X$, then $g \in \Lambda(0, T; M(K))$ and
\[
\hat{P}g = \left\{ \int_0^T \left(f(\tau), \phi_n(\tau) \right) \, d\tau \right\}_{n=1}^\infty = Pf.
\]
Thus the action of the operator \hat{P} on F can be identified with the action of the operator \hat{P}^*, and the image $P(F)$ is relatively compact in m. Now we can suppose that F is a general set with property (U).

Consider the sets $F_\varepsilon = \{ f \cdot \chi(\Omega_{f,\varepsilon}) : f \in F \}$. Here $\Omega_{f,\varepsilon}$ is a measurable set as in the Definition and $\chi(\Omega_{f,\varepsilon})$ is its characteristic function. The set F is uniformly integrable, hence for each $\delta > 0$ there exists an $\varepsilon > 0$ such that $\inf\{ |f - g|_1 : g \in F_\varepsilon \} < \delta$ for every $f \in F$. Note that $||h|| \leq |h|_1$ for each $h \in L^1(0, T; X)$. Therefore, by definition of P, we have $\inf\{ |Pf - y|_1 : y \in PF_\varepsilon \} \leq \delta$. But any set PF_ε is relatively compact in m, hence the set $PF \subset m$ is relatively compact. Since $P: L^1(0, T; X) \to m$ is continuous in the norm topologies, it is also continuous in the weak topologies. The weak and strong topologies coincide on PF. Thus the restriction $P|_F$ is continuous if we take the weak topology in $L^1(0, T; X)$ and the strong one in m. By [1, Proposition 13] any set F with property (U) is relatively weakly compact in $L^1(0, T; X)$. Since we can suppose that F is convex, the linear map $P: F \to PF$ is a homeomorphism in these topologies. The strong topology of m on PF is the strong topology of $L^1(||\cdot||)$ on F. Thus F is relatively compact in $L^1(||\cdot||)$ and the theorem is proved.

Acknowledgement. The author is very grateful to the referee for his valuable suggestions.

References

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650

Current address: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235