Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The game-theoretic value and the spectral radius of a nonnegative matrix


Authors: Joel E. Cohen and Shmuel Friedland
Journal: Proc. Amer. Math. Soc. 93 (1985), 205-211
MSC: Primary 15A42; Secondary 15A48, 90D05
MathSciNet review: 770520
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We relate some minimax functions of matrices to some spectral functions of matrices. If $ A$ is a nonnegative $ n \times n$ matrix, $ \upsilon (A)$ is the game-theoretic value of $ A$, and $ \rho (A)$ is the spectral radius of $ A$, then $ \upsilon (A) \leq \rho (A)$. Necessary and sufficient conditions for $ \upsilon (A) = \rho (A)$ are given. It follows that if $ A$ is nonnegative and irreducible and $ n > 1$, then $ \upsilon (A) < \rho (A)$. Also, if, for a real matrix $ A$ and a positive matrix $ B$, $ \upsilon (A,B) = {\sup _X}{\inf _Y}{X^T}AY/{X^T}BY$ over probability vectors $ X$ and $ Y$, then for nonnegative, nonsingular $ A$ and positive $ B$, $ \rho (AB) = {[\upsilon ({A^{ - 1}},B)]^{ - 1}}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A42, 15A48, 90D05

Retrieve articles in all journals with MSC: 15A42, 15A48, 90D05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0770520-0
PII: S 0002-9939(1985)0770520-0
Keywords: Eigenvalue inequality, Perron-Frobenius root, minimax, inverse nonnegative matrix, essentially nonnegative matrix, zero-sum two-person game, Jentzsch's theorem
Article copyright: © Copyright 1985 American Mathematical Society