Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strongly $ \pi$-regular matrix semigroups


Author: Jan Okniński
Journal: Proc. Amer. Math. Soc. 93 (1985), 215-217
MSC: Primary 20M10
DOI: https://doi.org/10.1090/S0002-9939-1985-0770522-4
MathSciNet review: 770522
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ S$ is a strongly $ \pi $-regular multiplicative sub-semigroup of the matrix algebra $ {M_n}(K)$, $ K$ being a field, then there exists a chain of ideals $ {S_1} \triangleleft \cdots \triangleleft {S_t} = S$ such that $ t \leq {2^{n + 1}}$ and any Rees factor semigroup $ {S_i}/{S_{i - 1}}$ is either completely 0-simple or nilpotent of index not exceeding $ \prod _{j = 0}^n(_j^n)$. This sharpens the main result of [4], in particular solving Problem 3.9 from [3].


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Algèbre, Chapitre III, Hermann, Paris, 1948.
  • [2] C. Faith, Algebra. II. Ring theory, Springer-Verlag, Berlin and New York, 1976. MR 0427349 (55:383)
  • [3] M. Putcha, On algebraic linear semigroups, Trans. Amer. Math. Soc. 259 (1980), 457-469. MR 567091 (81i:20087)
  • [4] -, Matrix semigroups, Proc. Amer. Math. Soc. 88 (1983), 386-390. MR 699399 (84m:20069)
  • [5] R. McNaughton and Y. Zalcstein, The Burnside problem for semigroups, J. Algebra 34 (1975), 292-299. MR 0374301 (51:10501)
  • [6] J. Okniński, On regular semigroup rings, Proc. Roy. Soc. Edinburgh (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0770522-4
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society