Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonabelian counterexamples to the Noether problem


Author: Jack Sonn
Journal: Proc. Amer. Math. Soc. 93 (1985), 225-226
MSC: Primary 12F20; Secondary 11R32, 11R58
DOI: https://doi.org/10.1090/S0002-9939-1985-0770525-X
MathSciNet review: 770525
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a finite group having a cyclic quotient of order 8. Let $ L$ be the field given by adjoining indeterminates $ \{ {x_g}\vert g \in G\} $ to $ {\mathbf{Q}}$. Then $ {L^G}$ is not a rational function field.


References [Enhancements On Off] (What's this?)

  • [1] H. W. Lenstra, Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299-325. MR 0347788 (50:289)
  • [2] D. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), 250-283. MR 648801 (84a:13007)
  • [3] R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148-158. MR 0244215 (39:5532)
  • [4] S. Wang, A counterexample to Grünwald's Theorem, Ann. of Math. (2) 49 (1948), 1008-1009. MR 0026992 (10:231g)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F20, 11R32, 11R58

Retrieve articles in all journals with MSC: 12F20, 11R32, 11R58


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0770525-X
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society