MARTIN COMPACTIFICATIONS
AND QUASICONFORMAL MAPPINGS

SHIGEO SEGAWA AND TOSIMASA TADA

Dedicated to Professor Yukio Kusunoki on the occasion of his 60th birthday.

Abstract. It is shown that there exists a quasiconformal mapping T of a Riemann surface R_1 onto another R_2 such that T cannot be extended to a homeomorphism of the Martin compactification R^*_1 of R_1 onto that R^*_2 of R_2.

It has long been asked whether a quasiconformal mapping between two Riemann surfaces can be extended to a homeomorphism between two Martin compactifications of the given surfaces. In literature this interesting problem was first explicitly stated in an expository paper by Royden [5]. Since then the problem seems to have been open and here we wish to settle the question in the negative. Namely,

Theorem. There exists a quasiconformal mapping T of a Riemann surface R_1 onto another R_2 such that T cannot be extended to a homeomorphism of the Martin compactification R^*_1 of R_1 onto that R^*_2 of R_2.

In passing we remark that the Theorem is invalid if the Martin compactification is replaced by the Royden compactification (cf., e.g., Sario and Nakai [6]). Concerning the other compactifications such as Kuramochi and Wiener compactifications the question seems to be entirely open (cf., e.g., Constantinescu and Cornea [3]).

The proof of the Theorem is achieved by giving examples of (R_1, R_2, T). Actually we can choose R_1 and R_2 to be plane regions of rather simple characters which were considered by Ancona [1]. In §1 an example of Ancona, mentioned above, is stated as the first Lemma. A minimality criterion also given by Ancona [2] is then stated as the second Lemma (in §2). Based upon these two preliminary results the construction of (R_1, R_2, T) is carried over in §3.

1. We start by fixing notation. Let α and β be positive numbers with $\alpha + \beta < \pi$. Using decreasing sequences $\{t_n\}_1^\infty$ and $\{t'_n\}_1^\infty$ in $(0, 1/2]$ with $t_n = \lim t'_n = 0$, we consider the radial slits

$$T_n = \{re^{i\alpha}; t_{2n} \leq r \leq t_{2n-1}\}, \quad T'_n = \{re^{-i\alpha}; t'_{2n} \leq r \leq t'_{2n-1}\}$$
and the region
\[\Omega_0 = \{ re^{i\theta}; 0 < r < 2, |\theta| < \alpha + \beta \} - \bigcup_{n=1}^{\infty} (T_n \cup T'_n). \]

The following surprisingly interesting fact is due to Ancona [1].

Lemma. If \(2\alpha < \beta \), then there exist sequences \(\{t_n\}, \{t'_n\} \) in \((0, 1/2) \) such that the Martin boundary of \(\Omega_0 \) lying over \(z = 0 \) contains two distinct minimal points \(\xi \) and \(\xi' \), and
\[\lim_{n \to \infty} \frac{1}{2} t_n = \xi, \quad \lim_{n \to \infty} \frac{1}{2} t'_n = \xi'. \]

2. We need another result of Ancona [2] on a criterion of minimality. Let \(\Omega \) be a plane region and \(x \) a relative boundary point of \(\Omega \). Then the above cited criterion is

Lemma. If there exists an open disk \(B(y, r) \) of center \(y \) and radius \(r \) with the property that \(B(y, r) \subset \Omega \) and \(x \notin \partial B(y, r) \), the relative boundary of \(B(y, r) \), then there exists a minimal Martin boundary point \(\xi \) lying over \(x \) with
\[\lim_{t \to 0} (x + t(y - x)) = \xi. \]

3. For any \(\alpha \) and \(\beta \) with \(0 < 2\alpha < \beta \) and \(\alpha + \beta < \pi \), consider a \(C^1 \) function \(f(\theta) \) on \([-\beta - \alpha, \alpha + \beta] \) such that \(f(\pm(\alpha + \beta)) = \pm \pi, f(\pm \alpha) = \pm \pi/2, f(0) = 0 \), and
\[C^{-1} \leq f'(\theta) = \frac{d}{d\theta} f(\theta) \leq C \]
for a constant \(C \) with \(C > 1 \). Let \(\Omega_0 \) be a region for which the Lemma in §1 is valid, and let \(\psi \) be the mapping from \(\Omega_0 \) to \(\psi(\Omega_0) \) defined by
\[\psi(re^{i\theta}) = re^{if(\theta)}. \]
Since the dilatation \(K_\psi(z) \) of \(\psi \) at \(z = re^{i\theta} \) satisfies
\[K_\psi(z) = \frac{|1 + f'(\theta)| + |1 - f'(\theta)|}{|1 + f'(\theta)| - |1 - f'(\theta)|} \leq C, \]
\(\psi \) is a quasiconformal mapping from \(\Omega_0 \) to \(\psi(\Omega_0) \) (cf., e.g., Lehto and Virtanen [4]).

Observe that the mapping \(\psi \) fixes sequences \(\{t_n\}_1^\infty \) and \(\{t'_n\}_1^\infty \) obtained in the Lemma in §1 termwise. Since the region \(\psi(\Omega_0) \) contains the disk \(B(1, 1) \) and the interval \((0, 1] \) contains both the sequences \(\{\psi(t_n)\}_1^\infty \) and \(\{\psi(t'_n)\}_1^\infty \), the Lemma in §2 assures that \(\{\psi(t_n)\} \) and \(\{\psi(t'_n)\} \) converge to an identical minimal point in the Martin compactification of \(\psi(\Omega_0) \). On the other hand, by the Lemma in §1, limits of \(\{t_n\} \) and \(\{t'_n\} \) are distinct. Therefore \(\psi \) cannot be extended to a homeomorphism between Martin compactifications of \(\Omega_0 \) and \(\psi(\Omega_0) \).

References

Department of Mathematics, Daido Institute of Technology, Daido, Minami, Nagoya 457, Japan