Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Some topological properties of the $ 1$-set contractions

Author: Tomás Domínguez Benavides
Journal: Proc. Amer. Math. Soc. 93 (1985), 252-254
MSC: Primary 47H09; Secondary 58C30
MathSciNet review: 770531
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C$ be a bounded closed convex subset of a Banach space $ X$. It is shown that, in the category sense, almost all $ 1$-set-contractions $ f:C \to C$ are condensing. To know how the condensing mappings are scattered in the set $ {\Sigma _1}(C)$ of $ 1$-set-contractions it is proved that the set of noncondensing mappings is dense in $ {\Sigma _1}(C)$.

References [Enhancements On Off] (What's this?)

  • [1] G. J. Butler, Almost all $ 1$-set-contractions have a fixed point, Proc. Amer. Math. Soc. 74 (1979), 353-357. MR 524316 (80d:47086)
  • [2] G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. MR 0070164 (16:1140f)
  • [3] F. S. De Blasi, Some generic properties in fixed point theory, J. Math. Anal. Appl. 71 (1979), 161-166. MR 545866 (80j:47067)
  • [4] T. Dominguez Benavides, Generic existence of a compact set of fixed points, J. Math. Anal. Appl. 90 (1982), 421-430. MR 680168 (84i:47072)
  • [5] -, Some generic properties of $ \alpha $-nonexpansive operators, J. Math. Anal. Appl. (to appear).
  • [6] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [7] B. N. Sadovski, On a fixed point principle, Functional Anal. Appl. 1 (1967), 74-76. MR 0211302 (35:2184)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H09, 58C30

Retrieve articles in all journals with MSC: 47H09, 58C30

Additional Information

Keywords: $ k$-set-contractions, Baire category, condensing mappings, fixed points, residual subset
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society