Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reductive algebras containing a direct sum of the unilateral shift and a certain other operator are selfadjoint


Author: Mohamad A. Ansari
Journal: Proc. Amer. Math. Soc. 93 (1985), 284-286
MSC: Primary 47C15; Secondary 46L10, 47D25
DOI: https://doi.org/10.1090/S0002-9939-1985-0770537-6
MathSciNet review: 770537
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a partial solution of the reductive algebra problem to prove that: a reductive algebra containing the direct sum of a unilateral shift of finite multiplicity and a finite-dimensional completely nonunitary contraction is a von Neumann algebra.


References [Enhancements On Off] (What's this?)

  • [1] E. Azoff, Compact operators in reductive algebras, Canad. J. Math. 27 (1975), 152-154. MR 0361818 (50:14263)
  • [2] K. J. Harrison, W. E. Longstaff and P. Rosenthal, Some tractable non-selfadjoint operator algebras, J. London Math. Soc. (2) 26 (1982), 325-330. MR 675175 (83m:47038)
  • [3] B. Moore, III and E. Nordgren, On transitive algebras containing $ {C_0}$-operators, Indiana Univ. Math. J. 24 (1975), 777-789. MR 0361846 (50:14291)
  • [4] E. Nordgren and P. Rosenthal, Algebras containing unilateral shifts or finite rank operators, Duke Math J. 40 (1973), 419-424. MR 0317074 (47:5622)
  • [5] H. Radjavi and P. Rosenthal, A sufficient condition that an operator algebra be selfadjoint, Canad. J. Math. 23 (1971), 588-597. MR 0417802 (54:5850)
  • [6] -, Invariant subspaces, Springer-Verlag, 1972.
  • [7] P. Rosenthal, On reductive algebras containing compact operators, Proc. Amer. Math. Soc. 47 (1975), 338-340. MR 0365168 (51:1421)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47C15, 46L10, 47D25

Retrieve articles in all journals with MSC: 47C15, 46L10, 47D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0770537-6
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society