On the spectral multiplicity of a class of finite rank transformations

Author:
G. R. Goodson

Journal:
Proc. Amer. Math. Soc. **93** (1985), 303-306

MSC:
Primary 47A35; Secondary 28D05

MathSciNet review:
770541

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The rank transformations, which Chacon called the simple approximations with multiplicity , were shown by Chacon to have maximal spectral multiplicity at most , although no example was given where this bound is attained for . In this paper, for each natural number , we show how to construct a simple approximation with multiplicity which is ergodic and has maximal spectral multiplicity equal to .

**[1]**J. R. Baxter,*A class of ergodic transformations having simple spectrum*, Proc. Amer. Math. Soc.**27**(1971), 275–279. MR**0276440**, 10.1090/S0002-9939-1971-0276440-2**[2]**R. V. Chacon,*Approximation and spectral multiplicity*, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Springer, Berlin, 1970, pp. 18–27. MR**0271303****[3]**Andrés del Junco,*A transformation with simple spectrum which is not rank one*, Canad. J. Math.**29**(1977), no. 3, 655–663. MR**0466489****[4]**Nathaniel A. Friedman,*Introduction to ergodic theory*, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. Van Nostrand Reinhold Mathematical Studies, No. 29. MR**0435350****[5]**V. I. Oseledec,*The spectrum of ergodic automorphisms*, Dokl. Akad. Nauk SSSR**168**(1966), 1009–1011 (Russian). MR**0199347****[6]**William Parry,*Topics in ergodic theory*, Cambridge Tracts in Mathematics, vol. 75, Cambridge University Press, Cambridge-New York, 1981. MR**614142****[7]**E. A. Robinson Jr.,*Ergodic measure preserving transformations with arbitrary finite spectral multiplicities*, Invent. Math.**72**(1983), no. 2, 299–314. MR**700773**, 10.1007/BF01389325

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A35,
28D05

Retrieve articles in all journals with MSC: 47A35, 28D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0770541-8

Article copyright:
© Copyright 1985
American Mathematical Society