A RIGIDITY RESULT FOR HOLOMORPHIC IMMERSIONS OF SURFACES IN \mathbf{CP}^n

MARCO RIGOLI

ABSTRACT. A pinching condition for the Gaussian curvature implies rigidity.

In this paper we prove a stronger version of a rigidity result obtained by Lawson [3] (the quantization lemma). Toward this aim we briefly recall some results and formulas for holomorphic immersions of a Riemann surface into projective space; we refer the reader to [1-3] for details.

Let R be a Riemann surface and $f: R \rightarrow \mathbf{CP}^n$ a holomorphic immersion, where \mathbf{CP}^n is the complex n-dimensional projective space with the normalized Fubini-Study metric of constant holomorphic sectional curvature 1.

Let z be a local complex coordinate on R. We can express the metric induced by f on R as

\begin{equation}
\text{ds}^2 = 2F \text{dz} \text{d\bar{z}},
\end{equation}

where F is a positive smooth function. Then the Laplace operator and the Gauss curvature K of this metric are respectively given by

\begin{align}
\Delta &= \frac{2}{F} \frac{d^2}{dz \, d\bar{z}}, \\
K &= -\frac{1}{F} \frac{d}{dz} \frac{d}{d\bar{z}} \log F.
\end{align}

If the image $f(R)$ in \mathbf{CP}^n lies in no proper, totally geodesic submanifold of \mathbf{CP}^n, then Calabi [2] showed that it is possible to define inductively a sequence of functions $\{F_k\}$, $k = 0, \ldots, n+1$, by setting

\begin{align}
F_0 &= 1, \\
F_1 &= F, \\
F_{k+1} &= \frac{F_k^2}{F_{k-1}} \left(\frac{d}{dz} \frac{d}{d\bar{z}} \log F_k + \frac{k+1}{2} F_k \right)
\end{align}

for $k = 1, \ldots, n$ and they satisfy the following:

(5.i) For $0 \leq k \leq n$, F_k is nonnegative and vanishes only at isolated points.
(5.ii) The succeeding function F_{k+1} is defined by (4) away from those points but extends to a real analytic function on all of R.
(5.iii) $F_{n+1} \equiv 0$.

Using the sequence $\{F_k\}$, the curvature functions are inductively defined by

\begin{equation}
K_k = \frac{F_{k+1} F_{k-1}}{F_k F_k^2} \quad \text{for} \quad 1 \leq k \leq n.
\end{equation}
We remark that the curvature functions are independent of local coordinates and that $K_n = 0$. Moreover $K_k > 0$ and, for $1 \leq k < n$, the set of zeros Z_{K_k} contains only isolated points.

From the recursive definition (5) of the curvature functions it is not hard to see that the following nontrivial relations hold:

(6) $K_1 = 1 - K$,

(7) $\frac{1}{2} \Delta \log K_k = K_{k+1} + K_{k-1} - 2K_k + K$ for $k = 1, \ldots, n - 1$,

where $K_0 = \frac{1}{2}$.

By induction from (6) and (7) we obtain

(8) $\Delta \log K_{n-1}^n K_{n-2} \ldots, K_{n-1} = n(n + 1)(K - 1/n)$.

Of course formulas (7) and (8) are valid on their appropriate domains of definition.

Now suppose R to be compact. Then the integrated kth curvature ν_k is defined to be

(9) $\nu_k = \frac{1}{2\pi} \int_R K_k dA$, $k = 0, \ldots, n$,

where dA is the area element of the Riemann surface R. It is well known that ν_k is an integer, precisely the order of the kth osculating curve of the isometric immersion of R into $\mathbb{C}P^n$. In particular, $4\pi \nu_0 = A$, the area of $f: R \rightarrow \mathbb{C}P^n$.

Define σ_k to be

(10) $\sigma_k = \frac{1}{4\pi} \int_R \Delta \log K_k dA$, $k = 0, \ldots, n$.

The σ_k's and the ν_k's are related by the classical Plücker formulas

(11) $\sigma_k = 2\nu_k - \nu_{k+1} - \nu_{k-1} + 2(g - 1)$, $k = 0, \ldots, n - 1$.

where g is the genus of R and $\nu_{-1} = 0$. With C_n we will indicate Calabi's curve (see [1]) in $\mathbb{C}P^n$ of constant Gaussian curvature $1/n$. C_n does not lie in any linear subspace of $\mathbb{C}P^n$ and is given by the following imbedding of $\mathbb{C}P^1$ in $\mathbb{C}P^n$:

(12) $(z_0, z_1) \rightarrow \left(z_0^n, \sqrt{n} z_0^{n-1} z_1, \ldots, \sqrt{\binom{n}{k}} z_0^{n-k} z_1^k, \ldots, z_1^n \right)$.

The curvature functions for this curve are

(13) $K_k = \frac{(k + 1)}{2n}(n - k)$.

Calabi [1] showed that, modulo holomorphic congruences, C_n is the only curve in $\mathbb{C}P^n$ of constant Gaussian curvature which does not lie in any linear subspace.

We are now ready to state and prove the following result.

THEOREM. Let R be a compact, connected Riemann surface (without boundary) and let $f: R \rightarrow \mathbb{C}P^n$ be a holomorphic immersion such that $f(R)$ does not lie in any linear subspace of $\mathbb{C}P^n$. Let K be the Gaussian curvature of the induced metric. If

(14) $K \geq 1/n$,
then \(R \) is topologically a sphere, \(K \equiv 1/n \) and \(f(R) = C_n \), where \(C_n \) is defined above.

Proof. First of all we observe that \(Z_{K_1} \cup \cdots \cup Z_{K_{n-1}} \neq R \). From (8) and (14) we obtain

\[
(15) \quad \Delta \log K_1^{n-1} K_{k-2}^{n-2}, \ldots, K_{n-1} \geq 0 \quad \text{on} \quad R \setminus (Z_{K_1} \cup \cdots \cup Z_{K_{n-1}}).
\]

Now let \(p \) be a point of \(R \) in which \(K_1^{n-1} \cdots K_{n-1} \) attains its positive absolute maximum. Then (15) is valid in a neighborhood \(U \) of \(p \) and at \(p \) \(\log K_1^{n-1} \cdots K_{n-1} \) attains its absolute maximum. The maximum principle for subharmonic functions (see [5]) then applies to show that \(\log K_1^{n-1} \cdots K_{n-1} \), and hence \(K_1^{n-1} \cdots K_{n-1} \), is constant on \(U \). A standard argument using connectedness of \(R \) then shows that

\[
(16) \quad K_1^{n-1} \cdots K_{n-1} = \text{constant on} \quad R.
\]

From (8) and (16) we deduce \(K \equiv 1/n \). Then the Gauss-Bonnet theorem applies to show \(g = 0 \), completing the proof.

Suppose \(R \) to be compact. Then integrating (8) we obtain the following estimate for the area of the immersion:

\[
(17) \quad A = 4\pi n(1 - g) + \frac{4\pi}{n+1} \sum_{k=1}^{n-1} (n-k)\sigma_k.
\]

In particular, for a holomorphic immersion of a sphere such that \(f(R) \) does not lie in any subspace of \(CP^n \) we have

\[
(18) \quad A \geq 4\pi n.
\]

Remark that if \(Z_{K_k} = \emptyset \), then \(\sigma_k = 0 \) because of (10); actually the converse is true because of the following

Lemma. Let \(R \) be a compact Riemann surface, \(h: R \to R \) be a smooth positive function whose zeros set \(Z \) contains only isolated points and

\[
(19) \quad \Delta \log h = f \quad \text{on} \quad R \setminus Z
\]

for some continuous \(f: R \to R \). Then

\[
(20) \quad \int_R \Delta \log h \leq 0
\]

and equality holds if and only if \(Z = \emptyset \).

We omit the computational proof of the lemma.

We have the following

Proposition. In the same hypothesis of the theorem, the following are equivalent:

(i) \(\nu_0 \leq n(1 - g) \),

(ii) \(Z_{K_1} = \cdots = Z_{K_{n-1}} = \emptyset \),

(iii) \(g = 0, \nu_k = (k+1)(n-k), \quad k = 0, \ldots, n-1 \).

Proof. (i)\(\Rightarrow\)(ii). Indeed, since \(A = 4\pi \nu_0 \) from (i) and (17), we get \(\sigma_k = 0 \), \(k = 1, \ldots, n-1 \); hence, by the above remark, (ii).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(ii)→(iii). From (ii) and the above remark, we have $\sigma_k = 0, \ k = 1, \ldots, n-1$; hence from (11) we obtain the system of equations

\begin{equation}
0 = 2\nu_k - \nu_{k+1} - \nu_{k-1} + 2(g-1), \quad k = 0, \ldots, n-1.
\end{equation}

It is easy to see that the solutions of (21) are given by

\begin{equation}
\nu_k = (k+1)(\nu_0 + k(g-1)), \quad k = 0, \ldots, n,
\end{equation}

and since $\nu_n = 0$ we obtain $\nu_0 = n(1-g)$. On the other hand $A = 4\pi\nu_0$ and we deduce, using the Gauss-Bonnet theorem, that $g = 0$ and hence (iii).

(iii)→(i). It is obvious.

REMARKS. (1) In the case $n = 2$ from (6) we immediately obtain from $K \leq \frac{1}{2}$ that (ii) holds, hence (i) and using the Gauss-Bonnet theorem we get $K \equiv \frac{1}{2}$. This case was considered by Nomizu and Smyth [4]. The previous proposition should be compared with Theorem 3 in Lawson [3].

(2) If we suppose

\begin{equation}
K_2 \geq 3\left(\frac{1}{2} - K\right),
\end{equation}

then from (7) we have $\Delta \log K_1 \geq 0$ and we deduce as in the theorem that K_1, and hence K, is constant. Again we observe that in the case $n = 2$ (23) becomes $K \geq \frac{1}{2}$.

REFERENCES

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY, ST. LOUIS, MISSOURI 63130