Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A hyperbolic $ 4$-manifold

Author: Michael W. Davis
Journal: Proc. Amer. Math. Soc. 93 (1985), 325-328
MSC: Primary 57N13; Secondary 51M10, 52A25
MathSciNet review: 770546
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There is a regular $ 4$-dimensional polyhedron with 120 dodecahedra as $ 3$-dimensional faces. (Coxeter calls it the "$ 120$-cell".) The group of symmetries of this polyhedron is the Coxeter group with diagram:

$\displaystyle [unk]$

For each pair of opposite $ 3$-dimensional faces of this polyhedron there is a unique reflection in its symmetry group which interchanges them. The result of identifying opposite faces by these reflections is a hyperbolic manifold $ {M^4}$.

References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Groupes et algèbres de Lie, Chaps. IV-VI, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [2] H. S. M. Coxeter, Regular honeycombs in hyperbolic space, Twelve Geometric Essays, Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 200-214. MR 0310745 (46:9843)
  • [3] -, Regular polytopes, 3rd ed., Dover, New York, 1973. MR 0370327 (51:6554)
  • [4] -, Regular complex polytopes, Cambridge Univ. Press, Cambridge, 1974. MR 0370328 (51:6555)
  • [5] J. S. Richardson and J. H. Rubinstein, Hyperbolic manifolds from regular polyhedra, preprint, 1982.
  • [6] J.-P. Serre, Cohomologie des groupes discrets, Prospects in Mathematics, Ann. of Math. Stud., Vol. 70, Princeton Univ. Press, Princeton, N. J., 1971, pp. 77-169. MR 0385006 (52:5876)
  • [7] C. Weber and H. Seifert, Die Beiden Dodekaederräuime, Math. Z. 37 (1933), 237-253. MR 1545392

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N13, 51M10, 52A25

Retrieve articles in all journals with MSC: 57N13, 51M10, 52A25

Additional Information

Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society