Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positively curved Kaehler submanifolds


Author: Antonio Ros
Journal: Proc. Amer. Math. Soc. 93 (1985), 329-331
MSC: Primary 53C55; Secondary 53C40
DOI: https://doi.org/10.1090/S0002-9939-1985-0770547-9
MathSciNet review: 770547
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we prove that if the holomorphic curvature of a compact Kaehler submanifold in the complex projective space is bigger than $ \tfrac{1}{2}$, then it is totally geodesic.


References [Enhancements On Off] (What's this?)

  • [1] K. Ogiue, Differential geometry of Kaehler submanifolds, Adv. in Math. 13 (1974), 73-114. MR 0346719 (49:11444)
  • [2] Y. T. Siu and S. T. Yau, Compact Kaehler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), 189-204. MR 577360 (81h:58029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55, 53C40

Retrieve articles in all journals with MSC: 53C55, 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0770547-9
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society