Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Continuity of homomorphisms on a Baire group

Authors: Isidore Fleischer and Tim Traynor
Journal: Proc. Amer. Math. Soc. 93 (1985), 367-368
MSC: Primary 22A10
MathSciNet review: 770556
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A pointwise converging sequence of continuous homomorphisms is equicontinuous.

References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Über metrische Gruppen, Studia Math. 3 (1931), 101-113.
  • [2] N. Bourbaki, General topology, Hermann, Paris, and Addison-Wesley, Reading, Mass., 1966.
  • [3] I. Fleischer and T. Traynor, Equicontinuity and uniform boundedness for homomorphisms and measures, Windsor Math. Report #83-16.
  • [4] J. L. Kelley and Isaac Namioka, Linear topological spaces, With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0166578 (29 #3851)
  • [5] B. J. Pettis, On continuity and openness of homomorphisms in topological groups, Ann. of Math. (2) 52 (1950), 293–308. MR 0038358 (12,391d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A10

Retrieve articles in all journals with MSC: 22A10

Additional Information

PII: S 0002-9939(1985)0770556-X
Keywords: Equicontinuity, Baire, topological group
Article copyright: © Copyright 1985 American Mathematical Society