CONTINUITY OF HOMOMORPHISMS ON A BAIRE GROUP

ISIDORE FLEISCHER AND TIM TRAYNOR

Abstract. A pointwise converging sequence of continuous homomorphisms is equicontinuous.

Banach [1, Satz 7, p. 108] proved that the pointwise limit of a sequence of continuous homomorphisms on a Baire group is continuous. This was refined by Pettis [5, Corollary 2.1, p. 297] who showed that a pointwise converging sequence of continuous homomorphisms on a Baire group is equicontinuous—which entails the continuity of the limit. His proof is dense, appealing to extraneous concepts and external previously proved results and imposing on the reader a modification of the major portion of the preceding theorem’s proof. We present a direct, self-contained, and uncluttered proof of a somewhat more general result: A sequence of continuous homomorphisms which is pointwise right- (or left-) Cauchy on a nonmeager subset of a topological group is equicontinuous; whence, its limit is continuous wherever it exists.

Let \(f_n \) be a sequence of continuous functions from a topological space \(X \) to a uniform space \(Y \) which is pointwise Cauchy, and let \(V \) be an entourage of \(Y \) closed in \(Y \times Y \): the set of \(x \) at which \((f nx, f nx) \in V \) is closed in \(X \) and therefore so is the intersection of these sets for \(m \geq n \). These intersections increase with \(n \), and the content of pointwise Cauchyness on a set \(C \) is just that their union contains \(C \). If \(C \) is nonmeager, one of these must have nonvoid interior and thus may, if \(X \) is a group, be written as a translate \(Ux \) of a neighborhood of the identity \(e \). Taking also \(Y \) to be a group uniformized by its right translates and the \(f_n \) to be homomorphisms, this yields \(f nu = f nx(f nx)^{-1}f nx(f nx) = V u V^{-1} \) for \(u \in U \) and \(m \geq n \). Since \(f_n \) is continuous at \(e \), it follows that \(f nu \in VV^{-1} \) for all \(m \geq n \) on some possibly smaller \(U \). Since there are only finitely many preceding \(m \), this entails the equicontinuity of the \(f_n \) and the continuity of their limit.

Pettis postulates pointwise convergence of the sequence of homomorphisms (rather than their one-sided Cauchyness) on a nonmeager subset with the Baire property, that is, one which differs by a meager set from an open set (“almost open” in Bourbaki). The presence of such a subset entails that the group is Baire (which we do
not require); on the other hand, there are nonmeager subsets of the real line, which are not almost open (Bourbaki [2, IX.5, Exercise 27]).

A different generalization of Banach's theorem is offered in [3].

REFERENCES

C. R. M. A., Université de Montréal, Montréal H3C 3J7, Québec, Canada

Department of Mathematics, University of Windsor, Windsor N9B 3P4, Ontario, Canada