Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Characterizations of Noetherian and hereditary rings

Author: Zheng-Xu He
Journal: Proc. Amer. Math. Soc. 93 (1985), 414-416
MSC: Primary 16A52; Secondary 16A33, 18G05
MathSciNet review: 773992
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the left Noetherian rings by the existence of decompositions of left modules into direct sums of an injective submodule and a submodule containing no injective submodule except 0. We also prove that a left Noetherian ring is left hereditary iff the suspension of each left ideal (see [7]) is injective or, equivalently, the above decomposition is unique.

References [Enhancements On Off] (What's this?)

  • [1] Carl Faith, Algebra. I. Rings, modules, and categories, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 190, Springer-Verlag, Berlin-New York, 1981. Corrected reprint. MR 623254
  • [2] Carl Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory; Grundlehren der Mathematischen Wissenschaften, No. 191. MR 0427349
  • [3] Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206
  • [4] Carl Faith, On hereditary rings and Boyle’s conjecture, Arch. Math. (Basel) 27 (1976), no. 2, 113–119. MR 0401837,
  • [5] Zheng-Xu He, Some results on homotopy theory of modules, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 74 (1983), no. 6, 366–372 (English, with Italian summary). MR 756717
  • [6] -, On weak $ i$-homotopy equivalences of modules, Rend. Accad. Naz. Lincei 76 (1984).
  • [7] Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
  • [8] Irving Kaplansky, Infinite abelian groups, Revised edition, The University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
  • [9] Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 0099360
  • [10] Zoltán Papp, On algebraically closed modules, Publ. Math. Debrecen 6 (1959), 311–327. MR 0121390

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A52, 16A33, 18G05

Retrieve articles in all journals with MSC: 16A52, 16A33, 18G05

Additional Information

Keywords: Injective module, $ i$-reduced module, $ i$-decomposition, unique $ i$-decomposition, Noetherian ring, left hereditary ring, FP-injective module, suspension of a module
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society