Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Asymptotics for solutions of smooth recurrence equations

Authors: Attila Máté and Paul Nevai
Journal: Proc. Amer. Math. Soc. 93 (1985), 423-429
MSC: Primary 39A10; Secondary 41A60, 42C05, 58F08
MathSciNet review: 773995
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that convergent solutions of a smooth recurrence equation whose gradient satisfies a certain "nonunimodularity" condition can be approximated by an asymptotic expansion. The lemma used to show this has some features in common with Poincaré's theorem on homogeneous linear recurrence equations. An application to the study of polynomials orthogonal with respect to the weight function $ \exp ( - {x^6}/6)$ is given.

References [Enhancements On Off] (What's this?)

  • [1] G. Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Roy. Irish Acad. Sect. A 76 (1976), 1-6. MR 0419895 (54:7913)
  • [2] P. Henrici, Applied and computational complex analysis, Vol. 2, Wiley, New York, London, Sydney and Toronto, 1977. MR 0453984 (56:12235)
  • [3] J. S. Lew and D. A. Quarles, Jr., Nonnegative solutions of a nonlinear recurrence, J. Approx. Theory 38 (1983), 357-379. MR 711463 (84m:39007)
  • [4] L. M. Milne-Thomsom, The calculus of finite differences, Macmillan, London, 1951. MR 0043339 (13:245c)
  • [5] P. Nevai, Orthogonal polynomials associated with $ \exp ({x^{ - 4}})$, Proc. Second Edmonton Conf. on Approximation Theory, Canadian Math. Soc. Conference Proc., vol. 3, 1983, pp. 263-285. MR 729336 (85b:42012)
  • [6] -, Asymptotics for orthogonal polynomials associated with $ \exp ({x^{ - 4}})$, SIAM J. Math. Anal. 15 (1984), 1177-1187. MR 762973 (86i:42011)
  • [7] N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
  • [8] H. Poincaré, Sur les équations linéaires aux différentielles et aux différences finies, Amer. J. Math. 7 (1885), 203-258. MR 1505385
  • [9] A. Máté, P. Nevai and T. Zaslavsky, Asymptotic expansions of ratios of coefficients of orthogonal polynomials with exponential weights, Trans. Amer. Math. Soc. 287 (1985), 495-505. MR 768722 (86b:42024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39A10, 41A60, 42C05, 58F08

Retrieve articles in all journals with MSC: 39A10, 41A60, 42C05, 58F08

Additional Information

Keywords: Asymptotic expansion, orthogonal polynomials, recurrence equation
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society