Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A heuristic principle for a nonessential isolated singularity


Author: David Minda
Journal: Proc. Amer. Math. Soc. 93 (1985), 443-447
MSC: Primary 30D45; Secondary 30C80
DOI: https://doi.org/10.1090/S0002-9939-1985-0773999-3
MathSciNet review: 773999
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A heuristic principle in function theory claims that a family of holomorphic (meromorphic) functions which share a property $ P$ in a region $ \Omega $ is likely to be normal in $ \Omega $ if $ P$ cannot be possessed by nonconstant entire (meromorphic) functions in the finite plane. L. Zalcman established a rigorous version of this principle. An analogous principle for a nonessential singularity is plausible: If a holomorphic (meromorphic) function $ f$ has an isolated singularity at $ {z_0}$, and in a deleted neighborhood of $ {z_0}$ the function $ f$ has a property $ P$ which cannot be possessed by nonconstant entire (meromorphic) functions in the finite plane, then $ {z_0}$ is a nonessential singularity. We establish a rigorous version of the principle for holomorphic functions that is very similar to Zalcman's precise statement of the other principle. However, this rendition of the heuristic principle for a nonessential singularity fails for meromorphic functions in contrast to Zalcman's solution.


References [Enhancements On Off] (What's this?)

  • [1] R. B. Burckel, An introduction to classical complex analysis, Vol. 1, Academic Press, New York, 1979. MR 555733 (81d:30001)
  • [2] J. Conway, Functions of one complex variable, 2nd ed., Springer-Verlag, New York, 1978. MR 503901 (80c:30003)
  • [3] A. Dinghas, Vorlesungen über Funtionentheorie, Grundlehren Math. Wiss., Bd. 110, Springer-Verlag, Berlin, 1961. MR 0179329 (31:3577)
  • [4] W. K. Hayman, Meromorphic functions, Oxford Univ. Press, Oxford, 1964. MR 0164038 (29:1337)
  • [5] E. Hille, Analytic function theory, Vol. 2, Ginn, Boston, Mass., 1962. MR 0201608 (34:1490)
  • [6] O. Lehto and K. I. Virtanen, On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. AI 240 (1957), 9 pp. MR 0087747 (19:404a)
  • [7] O. Lehto, Distribution of values and singularities of analytic functions, Ann. Acad. Sci. Fenn. 249/3 (1957). MR 0096800 (20:3282)
  • [8] -, The spherical derivative of meromorphic functions in the neighborhhod of an isolated singularity, Comment. Math. Helv. 33 (1959), 196-205. MR 0107003 (21:5732)
  • [9] J. W. Macki, On Julia's corollary to Picard's great theorem, Amer. Math. Monthly 75 (1968), 655-656. MR 0231998 (38:324)
  • [10] D. Minda, Bloch constants for meromorphic functions near an isolated singularity, Proc. Amer. Math. Soc. 91 (1984), 69-72. MR 735566 (85c:30010)
  • [11] L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975). 813-817. MR 0379852 (52:757)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D45, 30C80

Retrieve articles in all journals with MSC: 30D45, 30C80


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0773999-3
Keywords: Heuristic principle, nonessential isolated singularity, spherical derivative
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society