A heuristic principle for a nonessential isolated singularity
Author:
David Minda
Journal:
Proc. Amer. Math. Soc. 93 (1985), 443447
MSC:
Primary 30D45; Secondary 30C80
MathSciNet review:
773999
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A heuristic principle in function theory claims that a family of holomorphic (meromorphic) functions which share a property in a region is likely to be normal in if cannot be possessed by nonconstant entire (meromorphic) functions in the finite plane. L. Zalcman established a rigorous version of this principle. An analogous principle for a nonessential singularity is plausible: If a holomorphic (meromorphic) function has an isolated singularity at , and in a deleted neighborhood of the function has a property which cannot be possessed by nonconstant entire (meromorphic) functions in the finite plane, then is a nonessential singularity. We establish a rigorous version of the principle for holomorphic functions that is very similar to Zalcman's precise statement of the other principle. However, this rendition of the heuristic principle for a nonessential singularity fails for meromorphic functions in contrast to Zalcman's solution.
 [1]
Robert
B. Burckel, An introduction to classical complex analysis. Vol.
1, Pure and Applied Mathematics, vol. 82, Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1979. MR 555733
(81d:30001)
 [2]
John
B. Conway, Functions of one complex variable, 2nd ed.,
Graduate Texts in Mathematics, vol. 11, SpringerVerlag, New
YorkBerlin, 1978. MR 503901
(80c:30003)
 [3]
Alexander
Dinghas, Vorlesungen über Funktionentheorie, Die
Grundlehren der mathematischen Wissenschaften, Band 110, SpringerVerlag,
BerlinGöttingenHeidelberg, 1961 (German). MR 0179329
(31 #3577)
 [4]
W.
K. Hayman, Meromorphic functions, Oxford Mathematical
Monographs, Clarendon Press, Oxford, 1964. MR 0164038
(29 #1337)
 [5]
Einar
Hille, Analytic function theory. Vol. II, Introductions to
Higher Mathematics, Ginn and Co., Boston, Mass.New YorkToronto, Ont.,
1962. MR
0201608 (34 #1490)
 [6]
Olli
Lehto and K.
I. Virtanen, On the behaviour of meromorphic functions in the
neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser.
A. I. 1957 (1957), no. 240, 9. MR 0087747
(19,404a)
 [7]
Olli
Lehto, Distribution of values and singularities of analytic
functions, Ann. Acad. Sci. Fenn. Ser. A.I. no. 249/3
(1957), 16. MR
0096800 (20 #3282)
 [8]
Olli
Lehto, The spherical derivative of meromorphic functions in the
neighbourhood of an isolated singularity, Comment. Math. Helv.
33 (1959), 196–205. MR 0107003
(21 #5732)
 [9]
J.
W. Macki, On Julia’s corollary to Picard’s great
theorem, Amer. Math. Monthly 75 (1968),
655–656. MR 0231998
(38 #324)
 [10]
David
Minda, Bloch constants for meromorphic
functions near an isolated singularity, Proc.
Amer. Math. Soc. 91 (1984), no. 1, 69–72. MR 735566
(85c:30010), http://dx.doi.org/10.1090/S00029939198407355666
 [11]
Lawrence
Zalcman, A heuristic principle in complex function theory,
Amer. Math. Monthly 82 (1975), no. 8, 813–817.
MR
0379852 (52 #757)
 [1]
 R. B. Burckel, An introduction to classical complex analysis, Vol. 1, Academic Press, New York, 1979. MR 555733 (81d:30001)
 [2]
 J. Conway, Functions of one complex variable, 2nd ed., SpringerVerlag, New York, 1978. MR 503901 (80c:30003)
 [3]
 A. Dinghas, Vorlesungen über Funtionentheorie, Grundlehren Math. Wiss., Bd. 110, SpringerVerlag, Berlin, 1961. MR 0179329 (31:3577)
 [4]
 W. K. Hayman, Meromorphic functions, Oxford Univ. Press, Oxford, 1964. MR 0164038 (29:1337)
 [5]
 E. Hille, Analytic function theory, Vol. 2, Ginn, Boston, Mass., 1962. MR 0201608 (34:1490)
 [6]
 O. Lehto and K. I. Virtanen, On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. AI 240 (1957), 9 pp. MR 0087747 (19:404a)
 [7]
 O. Lehto, Distribution of values and singularities of analytic functions, Ann. Acad. Sci. Fenn. 249/3 (1957). MR 0096800 (20:3282)
 [8]
 , The spherical derivative of meromorphic functions in the neighborhhod of an isolated singularity, Comment. Math. Helv. 33 (1959), 196205. MR 0107003 (21:5732)
 [9]
 J. W. Macki, On Julia's corollary to Picard's great theorem, Amer. Math. Monthly 75 (1968), 655656. MR 0231998 (38:324)
 [10]
 D. Minda, Bloch constants for meromorphic functions near an isolated singularity, Proc. Amer. Math. Soc. 91 (1984), 6972. MR 735566 (85c:30010)
 [11]
 L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975). 813817. MR 0379852 (52:757)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
30D45,
30C80
Retrieve articles in all journals
with MSC:
30D45,
30C80
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198507739993
PII:
S 00029939(1985)07739993
Keywords:
Heuristic principle,
nonessential isolated singularity,
spherical derivative
Article copyright:
© Copyright 1985
American Mathematical Society
