Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Entropy increase as a consequence of measure invariance


Author: C. C. Brown
Journal: Proc. Amer. Math. Soc. 93 (1985), 448-450
MSC: Primary 28D20; Secondary 82A05
DOI: https://doi.org/10.1090/S0002-9939-1985-0774000-8
MathSciNet review: 774000
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An inequality, used in statistical mechanics for proving that entropy does not decrease, is shown to hold for general $ \sigma $-finite measure spaces. We comment briefly on the corresponding Hilbert space result.


References [Enhancements On Off] (What's this?)

  • [1] H. Bauer, Wahrscheinlichkeitstheorie und Grudnzüge der Masstheorie, De Gruyter, Berlin, 1978. MR 0239626 (39:983)
  • [2] L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968. MR 0229267 (37:4841)
  • [3] J. L. Doob, Stochastic processes, Wiley, London, 1953. MR 0058896 (15:445b)
  • [4] P. und T. Ehrenfest, Zur Theorie der Entropiezunahme in der Statistischen Mechanik von Gibbs, Wien. Ber. 115 (1906).
  • [5] H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, Springer, Berlin and New York, 1958. MR 0135535 (24:B1583)
  • [6] K. Jacobs, Lecture notes on ergodic theory, Aarhus Univ., Aarhus, 1963.
  • [7] M. Kac, et al., Probability and related topics in physical sciences, Lectures in Appl. Math. (Proc. Summer Seminar, Boulder, Colo., 1957), Vol. I, Interscience, London and New York, 1959. MR 0102849 (21:1635)
  • [8] -, Foundations of kinetic theory, Proc. Third Berkeley Sympos., Univ. of California Press, Berkeley, Vol. 3, 1954.
  • [9] A. I. Khinchin, Mathematical foundations of statistical mechanics, Dover, New York, 1949. MR 0029808 (10:666c)
  • [10] M. J. Klein, Entropy and the Ehrenfest urn model, Physica 22 (1956), 569-575. MR 0079408 (18:82a)
  • [11] G. Lindblad, Expectations and entropy inequalities for quantum systems, Comm. Math. Phys. 39 (1974), 111-120. MR 0363351 (50:15789)
  • [12] O. Penrose, Foundations of statistical mechanics, Pergamon Press, London, 1970. MR 0260355 (41:4982)
  • [13] R. C. Tolman, The principles of statistical mechanics, Oxford Univ. Press, 1938.
  • [14] G. E. Uhlenbeck and G. W. Ford, Lectures in statistical mechanics, Lectures in Appl. Math., Vol. 1, Amer. Math. Soc., Providence, R. I., 1963. MR 0151255 (27:1241)
  • [15] J. I. Voigt, Stochastic operators, information and entropy, Comm. Math. Phys. 81 (1981), 31-38. MR 630330 (84c:47009)
  • [16] A. Wehrl, General properties of entropy, Rev. Modern Phys. 50 (1978), 221-260. MR 0496300 (58:14862)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D20, 82A05

Retrieve articles in all journals with MSC: 28D20, 82A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0774000-8
Keywords: Entropy, measure preserving maps
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society