Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A double weight extrapolation theorem


Author: C. J. Neugebauer
Journal: Proc. Amer. Math. Soc. 93 (1985), 451-455
MSC: Primary 42B25
DOI: https://doi.org/10.1090/S0002-9939-1985-0774001-X
MathSciNet review: 774001
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If an operator is of weak type $ ({p_0},{p_0})$ with weights $ (u,\upsilon )$ for every $ (u,\upsilon ) \in {A_{{p_0}}}$, then the same holds for $ 1 < p < {p_0}$.


References [Enhancements On Off] (What's this?)

  • [1] J. Garcia-Cuerva, An extrapolation theorem in the theory of $ {A_p}$ weights, Proc. Amer. Math. Soc. 87 (1983), 422-426. MR 684631 (84c:42028)
  • [2] R. A. Hunt, On $ L(p,q)$ spaces, Enseign. Math. (2) 12 (1966), 249-275. MR 0223874 (36:6921)
  • [3] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [4] B. Muckenhoupt and R. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 55 (1976), 279-294. MR 0417671 (54:5720)
  • [5] J. L. Rubio de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N. S.) 7 (1982), 393-396. MR 663793 (83i:42016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25

Retrieve articles in all journals with MSC: 42B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0774001-X
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society