Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of subspaces $ X$ of $ l\sb p$ for which $ K(X)$ is an $ M$-ideal in $ L(X)$


Authors: Chong-Man Cho and William B. Johnson
Journal: Proc. Amer. Math. Soc. 93 (1985), 466-470
MSC: Primary 46B20; Secondary 41A50, 46B25, 47D15
DOI: https://doi.org/10.1090/S0002-9939-1985-0774004-5
MathSciNet review: 774004
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a subspace $ X$ of $ {l_p}$, $ 1 < p < \infty $, the compact operators on $ X$ are an $ M$-ideal in the bounded linear operators on $ X$ if and only if $ X$ has the compact approximation property.


References [Enhancements On Off] (What's this?)

  • [1] E. Alfsen and E. Effros, Structure in real Banach spaces, Ann. of Math. (2) 96 (1972), 98-173. MR 0352946 (50:5432)
  • [2] E. Behrends, $ M$-structure and the Banach-Stone theorem, Lecture Notes in Math., Vol. 736, Spring-Verlag, Berlin and New York, 1979. MR 547509 (81b:46002)
  • [3] M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205. MR 575060 (81m:46026)
  • [4] P. Flinn, A characterization of $ M$-ideals in $ B({l_p})$ for $ 1 < p < \infty $, Pacific J. Math. 98 (1982), 73-80. MR 644939 (84i:47064)
  • [5] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 0075539 (17:763c)
  • [6] W. B. Johnson, On quotients of $ {L_p}$ which are quotients of $ {l_p}$, Compositio Math. 34 (1977), 69-89. MR 0454595 (56:12844)
  • [7] P. Harmand and A. Lima, Banach spaces which are $ M$-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264. MR 735420 (86b:46016)
  • [8] A. Lima, Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62. MR 0430747 (55:3752)
  • [9] -, $ M$-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217. MR 544588 (81c:47047)
  • [10] J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970. MR 0205040 (34:4875)
  • [11] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin, 1977. MR 0500056 (58:17766)
  • [12] -, Classical Banach spaces. II, Springer-Verlag, Berlin, 1979. MR 540367 (81c:46001)
  • [13] R. R. Smith and J. Ward, $ M$-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349. MR 0467316 (57:7175)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 41A50, 46B25, 47D15

Retrieve articles in all journals with MSC: 46B20, 41A50, 46B25, 47D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0774004-5
Keywords: Compact approximation property, compact operator, $ M$-ideal, finite-dimensional decomposition
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society