Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On projective spheres and Fubini and Tzitzeica-Wilczyński pseudospheres

Author: Froim Marcus
Journal: Proc. Amer. Math. Soc. 93 (1985), 512-520
MSC: Primary 53A20
MathSciNet review: 774015
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The definition of a projective pseudosphere is given, and the following results are proved:

( 1 ) There exists one and only one Fubini pseudosphere iff

$\displaystyle L = M = - \frac{{3{\varphi ^2}}}{2},\quad \beta = \gamma = \varphi ;\quad \varphi = \varphi (\tau )\quad (\tau = u + \upsilon ).$

(2) There exist two classes of limiting Tzitzeica- Wilczynski pseudospheres or improper affine spheres.

These pseudospheres admit, beside the first directrix or affine normal, the first Fubini principal straight line or the conjugate of the first directrix with respect to the canonical tangent and projective normal. The asymptotes of the pseudosphere are twisted cubics.

References [Enhancements On Off] (What's this?)

  • [1] G. Fubini and E. Čech, Geometria proiettiva differenziale, vol. 1, Zanichelli, Bologna, 1926.
  • [1'] -, Introduction à la géométrie projective differentielle des surfaces, Gauthier-Villars, Paris, 1931.
  • [2] E. Y. Wilczynski, Über Flächen mit unbestimten Direktrixkurven, Math. Ann. 76 (1915), 129-160.
  • [3] W. Blaschke, Differential geometrie, Springer-Verlag, Berlin, 1923, pp. 212, 216.
  • [4] E. Cartan, Sur la connexion projective des surfaces, C. R. Acad. Sci. Paris Ser. A-B 178 (1929), 750.
  • [5] J. Kaucky, Étude des surfaces dont une droite canonique passe par un point fixe, Publ. No. 109 de la Faculté des Sci. de l'Université Masaryk, Brno.
  • [6] -, Sur les surfaces dont une droite canonique passe par un point fixe, Rend. Accad. Leincei 9 (1929).
  • [7] Froim Marcus, On the results of I. Kaucky concerning the problem of the determination of surfaces for which a canonical line passes through a fixed point, Acad. Roy. Belg. Bull. Cl. Sci. (5) 63 (1977), no. 3, 274–282 (English, with French summary). MR 0487824 (58 #7424)
  • [8] Froim Marcus, Completion of Čech’s and Kaucký’s results on the analysis of surfaces on which a canonical line passes through a fixed point, Ann. Mat. Pura Appl. (4) 114 (1977), 319–330. MR 0487825 (58 #7425)
  • [9] Froim Marcus, Sur les surfaces dont deux normales ou droites canoniques passent par un point fixe, An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 24 (1978), no. 2, 345–349 (French). MR 533762 (80i:53004)
  • [10] F. Marcus, Sur les réseaux de Koenigs, Rev. Math. Pures Appl. 2 (1957), 555–559 (French). MR 0095491 (20 #1993)
  • [11] E. Kamke, Differentialgleichungen 3 Auflage, Chelsea, New York, pp. 26-28.
  • [12] Froim Marcus, Again on the surfaces which allow ∞² projective transformations into themselves, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 22 (1976), no. 1, 35–48. MR 0642205 (58 #30808)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A20

Retrieve articles in all journals with MSC: 53A20

Additional Information

PII: S 0002-9939(1985)0774015-X
Article copyright: © Copyright 1985 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia