Pseudo-Pontrjagin classes
Author:
Yasuo Matsushita
Journal:
Proc. Amer. Math. Soc. 93 (1985), 521-524
MSC:
Primary 53C50; Secondary 53C05, 57R20
DOI:
https://doi.org/10.1090/S0002-9939-1985-0774016-1
MathSciNet review:
774016
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For a pseudo-Riemannian manifold we can construct a pseudo-Pontrjagin class as represented by a certain ad -invariant form on the manifold so that it coincides with the Pontrjagin class of the manifold.
- [1] S. S. Chern, Pseudo Riemannian geometry and the Gauss-Bonnet formula, Acad. Brasil. Ciencias 35 (1963), 17-26. MR 0155261 (27:5196)
- [2]
Y. Matsushita, Thorpe-Hitchin inequality for compact Einstein
-manifolds of metric signature
and the generalized Hirzebruch index formula, J. Math. Phys. 24 (1983), 36 40. MR 690367 (84f:53039)
- [3] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951. MR 0039258 (12:522b)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C50, 53C05, 57R20
Retrieve articles in all journals with MSC: 53C50, 53C05, 57R20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1985-0774016-1
Keywords:
Pseudo-Riemannian manifolds,
pseudo-Pontrjagin classes,
Pontrjagin classes
Article copyright:
© Copyright 1985
American Mathematical Society