Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pseudo-Pontrjagin classes


Author: Yasuo Matsushita
Journal: Proc. Amer. Math. Soc. 93 (1985), 521-524
MSC: Primary 53C50; Secondary 53C05, 57R20
DOI: https://doi.org/10.1090/S0002-9939-1985-0774016-1
MathSciNet review: 774016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a pseudo-Riemannian manifold we can construct a pseudo-Pontrjagin class as represented by a certain ad $ ({\text{S}}{{\text{O}}_0}(p,q))$-invariant form on the manifold so that it coincides with the Pontrjagin class of the manifold.


References [Enhancements On Off] (What's this?)

  • [1] S. S. Chern, Pseudo Riemannian geometry and the Gauss-Bonnet formula, Acad. Brasil. Ciencias 35 (1963), 17-26. MR 0155261 (27:5196)
  • [2] Y. Matsushita, Thorpe-Hitchin inequality for compact Einstein $ 4$-manifolds of metric signature $ ( + + - - )$ and the generalized Hirzebruch index formula, J. Math. Phys. 24 (1983), 36 40. MR 690367 (84f:53039)
  • [3] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951. MR 0039258 (12:522b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C50, 53C05, 57R20

Retrieve articles in all journals with MSC: 53C50, 53C05, 57R20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0774016-1
Keywords: Pseudo-Riemannian manifolds, pseudo-Pontrjagin classes, Pontrjagin classes
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society