Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Accumulation points of nowhere dense sets in $ H$-closed spaces

Authors: Jack R. Porter and R. Grant Woods
Journal: Proc. Amer. Math. Soc. 93 (1985), 539-542
MSC: Primary 54D25
MathSciNet review: 774019
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a ten year old problem by Kulpa and Szymański is settled by constructing an example of a minimal Hausdorff space without isolated points which has a point that is not the accumulation point of any nowhere dense subset of the minimal Hausdorff space. Also, a result by Kulpa and Szymański is extended by showing that a regular point in an $ H$-closed space without isolated points is the accumulation point of some nowhere dense subset.

References [Enhancements On Off] (What's this?)

  • [B] B. Banschewski, Über Hausdorffsch-minimale Erweiterung von Räumen, Arch. Math. 12 (1961), 355-365. MR 0142097 (25:5490)
  • [vD] E. van Douwen, Remote points, Dissertationes Math. 188 (1981), 50 pp. MR 627526 (83i:54024)
  • [F] S. V. Fomin, Extensions of topological spaces, Ann. of Math. (2) 44 (1943), 471-480. MR 0008686 (5:45g)
  • [H] H. Herrlich, Nicht alle $ {T_2}$-minimalen Räume sind von 2. Kategorie, Math. Z. 91 (1966), 185. MR 0188965 (32:6392)
  • [K] M. Katětov, Über $ H$-abgeschlossene und bikompakte Raüme, Časopis Mat. Fys. 69 (1940), 36-49. MR 0001912 (1:317i)
  • [KS] W. Kulpa and A. Szymański, Accumulation points of nowhere dense sets, Colloq. Math. 32 (1974), 69-70. MR 0367890 (51:4132)
  • [P] D. L. Plank, On a class of subalgebras of $ C(X)$ with applications to $ \beta X\backslash X$, Fund. Math. 64 (1969), 41-54. MR 0244953 (39:6266)
  • [PV] J. R. Porter and C. Votaw, $ H$-closed extensions. II, Trans. Amer. Math. Soc. 202 (1975), 193-209. MR 0365493 (51:1745)
  • [PW$ _{1}$] J. R. Porter and R. G. Woods, Nowhere dense subsets of metric spaces with applications to Stone-Čech compactifications, Canad. J. Math. 24 (1972), 622-630. MR 0324665 (48:3015)
  • [PW$ _{2}$] -, When all semiregular $ H$-closed extensions are compact, Pacific J. Math. (to appear).
  • [S] N. A. Salin, On special extensions of topological spaces, C. R. (Dokl.) Acad. Sci. URSS 38 (1943), 6-9. MR 0008687 (5:45h)
  • [Wa] R. C. Walker, The Stone-Čech compactification, Springer-Verlag, New York, 1974. MR 0380698 (52:1595)
  • [Wo] R. G. Woods, A survey of absolutes of topological spaces, Topological Structures. II, Math. Centre Tracts 116, Math. Centrum, Amsterdam, 1979, pp. 323-362. MR 565852 (81d:54019)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D25

Retrieve articles in all journals with MSC: 54D25

Additional Information

Keywords: Nowhere dense sets, accumulation points, H-closed spaces, minimal Hausdorff spaces
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society