Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Words periodic over the center of a division ring


Authors: Leonid Makar-Limanov and Peter Malcolmson
Journal: Proc. Amer. Math. Soc. 93 (1985), 590-592
MSC: Primary 16A39; Secondary 16A70
DOI: https://doi.org/10.1090/S0002-9939-1985-0776184-4
MathSciNet review: 776184
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In generalization of a result of Herstein, the authors prove that, in a division ring with uncountable center, if any given nontrivial group word takes only values periodic over the center, then the division ring is commutative. Techniques include use of the result that a noncommutative division ring finite-dimensional over its center includes a nonabelian free group in its multiplicative group.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Gonsalves, Free groups in subnormal subgroups and the residual nilpotence of the group of units of rings, Trab. Departamento Mat., Vol. 58, Univ. Sao Paulo, 1983.
  • [2] I. M. Herstein, Multiplicative commutators in division rings. II, Rend. Circ. Mat. Palermo II 29 (1980), 485-489. MR 638685 (83a:16043)
  • [3] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R.I., 1964. MR 0222106 (36:5158)
  • [4] I. Kaplansky, A theorem on division rings, Canad. J. Math. 3 (1951), 290-292. MR 0042389 (13:101g)
  • [5] A. I. Lichtman, Free subgroups of normal subgroups of the multiplicative groups of skew fields, Proc. Amer. Math. Soc. 71 (1978), 174-178. MR58#779. MR 0480623 (58:779)
  • [6] -, On subgroup of the multiplicative groups of skew fields, Proc. Amer. Math. Soc. 63 (1977), 15-16. MR56#5744. MR 0447432 (56:5744)
  • [7] L. Makar-Limanov, On free subsemigroups of skew fields, Proc. Amer. Math. Soc. 91 (1984), 189-191. MR 740167 (85j:16022)
  • [8] W. G. Scott, On the multiplicative group of a division ring, Proc. Amer. Math. Soc. 8 (1957), 303-305. MR 0083984 (18:788g)
  • [9] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270. MR44#4105. MR 0286898 (44:4105)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A39, 16A70

Retrieve articles in all journals with MSC: 16A39, 16A70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0776184-4
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society