Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Which amalgams are convolution algebras?


Authors: James Stewart and Saleem Watson
Journal: Proc. Amer. Math. Soc. 93 (1985), 621-627
MSC: Primary 43A15
DOI: https://doi.org/10.1090/S0002-9939-1985-0776191-1
MathSciNet review: 776191
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine necessary and sufficient conditions on a locally compact abelian group $ G$ for the amalgam $ \left( {{L^p},{l^q}} \right)\left( G \right)$ to be an algebra under convolution. If $ q > 1,G$ must be compact; if $ p < 1,G$ must be discrete. If $ p \geqslant 1$ and $ q \leqslant 1$, the amalgam is always an algebra.


References [Enhancements On Off] (What's this?)

  • [1] J.-P. Bertrandias, C. Datry and C. Dupuis, Unions et intersections d'éspaces $ {L^p}$ invariantes par translation où convolution, Ann. Inst. Fourier (Grenoble) 28 (1978), 53-84.n MR 499586 (81g:43005)
  • [2] R. C. Busby and H. A. Smith, Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc. 263 (1981), 309-341. MR 594411 (82i:43003)
  • [3] R. R. Goldberg, On a space of functions of Wiener, Duke Math. J. 34 (1967), 683-692. MR 0217614 (36:703)
  • [4] F. Holland, Harmonic analysis on amalgams of $ {L^p}$ and $ {l^q}$, J. London Math. Soc. (2) 10 (1975), 295-305. MR 0374817 (51:11013)
  • [5] G. Köthe, Topological vector spaces, Springer-Verlag, New York, 1969.
  • [6] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, New York and London, 1968. MR 0306811 (46:5933)
  • [7] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • [8] J. Stewart, Fourier transforms of unbounded measures, Canad. J. Math. 31 (1979), 1281-1292. MR 553161 (81i:43001)
  • [9] K. Urbanik, A proof of a theorem of Żelazko on $ {L^p}$-algebras, Colloq. Math. 8 (1961), 121-123. MR 0130318 (24:A182b)
  • [10] N. Wiener, On the representation of functions by trigonometric integrals, Math. Z. 24 (1926), 575-616. MR 1544780
  • [11] W. Żelazko, On the algebras $ {L^p}$ of locally compact groups, Colloq. Math. 8 (1961), 115-120.
  • [12] -, A theorem on the discrete groups and algebras $ {L^p}$, Colloq. Math 8 (1961), 205-207. MR 0130319 (24:A183)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A15

Retrieve articles in all journals with MSC: 43A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0776191-1
Keywords: Amalgam, convolution algebra
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society