An oscillation criterion for linear second-order differential systems

Authors:
F. V. Atkinson, Hans G. Kaper and Man Kam Kwong

Journal:
Proc. Amer. Math. Soc. **94** (1985), 91-96

MSC:
Primary 34C10

DOI:
https://doi.org/10.1090/S0002-9939-1985-0781063-2

MathSciNet review:
781063

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article is concerned with the oscillatory behavior at infinity of the solution of a system of second-order differential equations, is a continuous matrix-valued function on whose values are real symmetric matrices of order .

It is shown that the solution is oscillatory at infinity if (at least) eigenvalues of the matrix dt end to infinity as .

**[1]**D. Hinton and R. T. Lewis,*Oscillation theory for generalized second-order differential equations*, Rcky Mountain J. Math.**10**(1980), 751-766. MR**595103 (82c:34039)****[2]**M. K. Kwong and H. G. Kaper,*Oscillation of two-dimensional linear second-order differential systems*, J. Differential Equations**56**(1985). MR**774162 (86j:34032)****[3]**M. K. Kwong, H. G. Kaper, K. Akiyama and A. B. Mingarelli,*Oscillation of linear second-order differential systems*, Proc. Amer. Math. Soc.**91**(1984), 85-91. MR**735570 (85g:34027)****[4]**P. Lancaster,*Theory of matrices*, Academic Press, New York, 1969. MR**0245579 (39:6885)****[5]**A. B. Mingarelli,*On a conjecture for oscillation of second-order ordinary differential systems*, Proc. Amer. Math. Soc.**82**(1981), 593-598. MR**614884 (82j:34028)****[6]**-,*An oscillation criterion for second-order selfadjoint differential systems*, C. R. Math. Rep. Acad. Sci. Canada**2**(1980), 287-290. MR**600563 (82b:34042)****[7]**W. T. Reid,*Sturmian theory for ordinary differential equations*, Springer-Verlag, New York, 1980. MR**606199 (82f:34002)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0781063-2

Keywords:
Matrix differential equation,
oscillation theory,
matrix Riccati equation,
Riccati inequality

Article copyright:
© Copyright 1985
American Mathematical Society