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GENERIC FRÉCHET DIFFERENTIABILITY

OF CONVEX OPERATORS

NIKOLAI K. KIROV

Abstract. We consider order-bounded convex operators F: E -> X from a reflexive

Banach space E into a Banach lattice X. In both cases (i) X and X* have weak

compact intervals, and (ii) A"has norm compact intervals, we obtain that Fis Fréchet

differentiable at the points of some dense Gs subset of E.

0. Introduction. Let £ be a Banach space, X a Banach lattice, and L(E, X) the

space of all continuous linear operators from E to X. Let K(E, X) denote the space

of compact linear operators. We recall that F: E -* X is called a convex operator if

F(Xe1 +(1 - X)e2) < XFex +(1 - X)Fe2

whenever ex, e2 g E and 0 < X: < 1. Fis called order-bounded if for each e0 g E

there exists a neighbourhood V of e0 such that F(V) is an order-bounded subset of

X.

In this paper we study the problem of generic Fréchet differentiability of convex

operators defined in E; i.e., we give conditions under which every order-bounded

convex operator F is Fréchet differentiable at the points of some dense Gs subset of

E. In the case when F is a real-valued convex function (i.e., X = R ), this problem

has been thoroughly studied. Banach spaces E for which every continuous convex

real-valued function F: E -* R is Fréchet differentiable at the points of a dense Gs

subset of E are called Asplund spaces. These spaces have been chracterized in many

different ways (see Namioka and Phelps [14], Phelps [15], Stegal [16], Kenderov [10]).

In another particular case, namely when E = R", the author found [13] the

necessary and sufficient condition for generic Fréchet differentiability of convex

operators F: E -* X. This condition is X has weak compact intervals (see also

Borwein [3]).

There are some results in the cases when both E and X are infinite dimensional.

Two of these results can be found in [13]. If E is an arbitrary Banach space, X is a

dual lattice such that L(E, X) has the Radon-Nikodym property (for the defintion

see Diestel and Uhl [6, p. 61]). Then every continuous convex operator F: E —> X is

generic Fréchet differentiable. Sufficient conditions for L(E, X) to have the

Radon-Nikodym property are the following: the space E* and the dual lattice X

have the Radon-Nikodym property, and L(E, X) = K(E, X) (Andrews [1]). The
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98 N. K. KIROV

assumptions in the second result, given in the paper mentioned above, are X has

norm compact intervals, F is order-bounded, and L(E, X) = (K(E, X))** (the

bidual space). Different types of conditions, including a quite restrictive supposition

for the positive cone of X, were obtained by Borwein [2, Theorem 5.2], to prove that

every continuous convex operator from an Asplund space E to X is generic Fréchet

differentiable.

It should be noted here that the case of arbitrary E, X, and Fis very complicated.

There is a continuous convex operator P: l2 -» l2, where l2 is the usual Hubert

space, which is nowhere Fréchet differentiable in l2 (see [12, Example 2]). This shows

that we must impose some kind of restrictions on the operator F in order to have

positive results. Order boundedness, first used by Valadier [17], then by the author

[13], is the most natural restriction and it will also be used here.

Furthermore, we shall employ Kenderov's method of multivalued monotone

mappings (see [9-11]), and for this purpose we introduce some more definitions.

We say that the multivalued mapping T: E -» L(E, X) is a generalized monotone

mapping (briefly g.m.m.) if (Ax - A2)(ex — e2) > 0 for every A¡ g Te¡, e¡ g E,

i = 1,2. The subdifferential of a convex operator F: E -» X, i.e., the multivalued

mapping

dF: e0 —> [A ^ L(E, X): A(e — e0) < Fe — Fe0 for every e g E)

is a g.m.m. The g.m.m. is said to be maximal if its graph is not properly contained in

the graph of any other g.m.m. By Zorn's lemma the graph of every g.m.m. is

contained in the graph of some maximal g.m.m. In what follows we suppose that

Te # 0 for all e g E.

The multivalued mapping T: E -» L is said to be upper semicontinuous at the

point e0 G E if for every open set U d Te0 there exists a neighbourhood W of e0

such that Te c U for all e g W.

1. Preliminary results. It is known [12, Theorem 4] that the continuous convex

operator F: E -» X is Fréchet differentiable at e g E if and only if the g.m.m. dF is

single-valued and norm-to-norm upper semicontinuous at this point. This fact,

together with a corollary of a topological result of Christensen [5, Theorem 2], gives

us the desired result.

Theorem 1.1 (Christensen). Let E be a Banach space, Z a normed space, and T:

E —» Z a norm-to-weak upper semicontinuous multivalued mapping with nonempty and

weak compact images. Then there exists a dense Gs subset of E at each point e0 of

which the following condition is fulfilled:

,   , There exists a point z0 G Te0 such that for every e > 0 there is

8> 0 with inf{||z — z0||: 7 g Te) < e whenever \\e — e0\\ < 8.

Proposition 1.2. Let E be a Banach space, Xa normed lattice, and T: E -* L(E, X)

a g.m.m. Then T has property (*) at the point e0 G E iff T is single-valued and

norm-to-norm upper semicontinuous at e0.
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Proof. It is easily seen that if T is single-valued and norm-to-norm upper

semicontinuous at e0, then T has property (*) at e0. Suppose T has (*) at e0.

Choosing the point A0 G Te0 from (*) and some e > 0, we see that there exists

¿5 > 0 such that inf{||^ - ,40||: A G Te} < e/2 whenever e g U = {e g E: \\e -

e0\\ < 8}. We shall prove that Te a {A (= L(E, X): \\A - A0\\ < e] for any e G U.

That is sufficient to conclude that T is single-valued and norm-to-norm upper

semicontinuous at e0. Let e G U, A G Te, h G E, \\h\\ < 1. For some / > 0 we have

e' = e + th g U and e" = e - th g U. There are A' G Te' and A" g Te" such that

\\A' - A0\\ < e/2 and \\A" - A0\\ < e/2. By the monotonicity of T we get A'h > Ah

and Ah > A"h. Hence,

(A" - A0)h <(A- A0)h < (,4' - A0)h.

Let x* g A'* (the positive cone of A*), ||x*|| < 1. We have

((A" - /10)A, x*) < <U - ¿0)A, x*) < ((/I' - ¿0)A, x*>.

Consequently, ((^4 - A0)h, x*) < e/2. Since X* is a lattice, |((^ - A0)h, x*)\ < e

for any x* g Ar*, ||x*|| < 1. It follows that \\(A - v40)/i|| < e, and the proposition is

proved.

Now it becomes clear that if the g.m.m. 3,- satisfies the suppositions of Theorem

1.1, then F is generic Fréchet differentiable. In order to apply this theorem for a

g.m.m. T: E -» L(E, X), we must choose some suitable closed linear subspace

Z c L(E, X) such that Te c Z for all e G E. Then we must prove that T satisfies

the requirement of the theorem. Before presenting the proposition we need a

definition.

We say that the g.m.m. T is locally weak-order bounded if for every e0 g E there

exists a neighbourhood V of e0 (with respect to the norm topology) such that the set

T(V) = \J{Te: e g V) is weak-order bounded. This means that the sets {Ae:

A G T(V)} are order bounded for every e g E.

Proposition 1.3 [12]. Let E be a Banach space, X a Banach lattice with weak

compact intervals, and T: (E, || • ||) -> (L(E, X), a(L(E, X), E ® X*)) a locally

weak-order bounded and maximal g.m.m. Then T is upper semicontinuous and

compact valued at all points of E.

Remark. We recall that the tensor product E ® X* can be considered as a

subspace of L(E, X)*. Every point u g E ® X*, u = Ef=1<?, ® xf, defines a con-

tinuous linear functional on L(E, X) in the following way: (A, u) = Ef=1(v4e,, xf)

for all A G L(E, X).

Proof. Since X has weak compact intervals, every weak-order bounded subset of

L(E, X) is relatively compact in the topology a(L(E, X), E ® X*). Hence, for

every e0 g E there is an open set F3e0 such that T(V) is relatively compact,

because T is locally weak-order bounded. It is not difficult to prove that such a

mapping is upper semicontinuous and compact valued, provided it has closed graph

(see [13, Proposition 1.5]). That every maximal g.m.m. has a closed graph can be

seen from the following lemma.
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Lemma 1.4. Every maximal g.m.m. has a closed graph with respect to the topology

a(L(E, X), E è X*).

Proof. Let e0 g E, {ea} be a net, \\ea - e0\\ -* 0, Aa g Tea, and Aa -* A0 in the

topology described above. That means (Aae, x*) -» (A0e, x*) for every e G E and

x* g X*. We must show that A0 g Te0. For each e g E and A G Te,

(A - Aa)(e - ea) = Ae - Aae - Aea + Aaea > 0

by monotonicity. Now Aae -» /40e in the weak topology of X and \\Aea - Ae0\\ -* 0.

If x* g X*,

\(Aae« - -Vo> x*)\ < |(^aea - ^ae0, x*>| + \(Aae0 - /l0e0, x*>|

< Mall Ik. - c0|| IMI + |<(^„ - A0)e0, x*)\ -4 0,

because the set {^4a}a>a is norm bounded [12,Theorem 3] for some a0. Thus,

(A — Aa)(e — ea) -» (A - A0)(e - e0) in the weak topology of X. Since the posi-

tive cone of each Banach lattice is weakly closed, (A — A0)(e — e0) > 0 for every

e g E, A g Te. By the maximality of 71 we obtain that A0 G 7e0. The proof is

finished.

2. G.m.m. with images in K(E, X). In this section we assume that every g.m.m. has

images in the space of compact operators K(E, X).

Theorem 2.1. Let E be a reflexive Banach space, X a Banach lattice with weak

compact intervals, and T: E -» K(E, X) a locally weak-order bounded g.m.m. Then T

is single-valued and norm-to-norm upper semicontinuous at the points of some dense Gs

subset of E.

Proof. Proposition 1.3 shows that T is upper semicontinuous and compact

valued with respect to the weak topology of K(E, X), because the topologies of

a(K(E, X), E ® A'*) and a(K(E, X), K(E, X)*) coincide on the bounded sets

(Kaiton [8]). Theorem 1.1 and Proposition 1.2 can be applied.

Corollary 2.2. If E and X are as in Theorem 2.1 and F: E -* X is an

order-bounded convex operator with 3^: E -* K(E, X), then F is generic Fréchet

differentiable.

Proof. This is immediate from Theorem 2.1, because the subdifferential of an

order-bounded convex operator is a locally weak-order bounded g.m.m., and single-

valuedness and norm-to-norm upper semicontinuity of dF are equivalent to Fréchet

differentiability of F

A convex operator P: E -> X is said to be sublinear if P(Xe) = XT'e for all e g E

and X g R, X ^ 0. Since the subdifferential of every sublinear operator is a locally

weak-order bounded g.m.m., provided X has weak compact intervals, we obtain the

following:

Corollary 2.3. Suppose E and X are as in Theorem 2.1 and P: E -» X is a

sublinear operator with support set (i.e., 3^(0)) consisting of compact operators. Then P

is generic Fréchet differentiable.
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Corollary 2.4. If E is a reflexive space, X is a Banach lattice with norm compact

intervals, and F: E -» X is an order-bounded convex operator, then F is generic Fréchet

differentiable.

Proof. It is not difficult to see that, for every e0, e, g E, there exists a

neighbourhood (in the norm topology) Woí ex such that the set {Aw: A g dF(e0),

w g W] is order bounded. Hence, dF(e0) c K(E, X) for every e0 g E. It follows

that Corollary 2.2 can be applied.

3. G.m.m. with images in B(E, X). A linear operator A: E -> X is called order

bounded if A maps the unit ball of E in an order-bounded subset of X. The space of

all order-bounded linear operators will be denoted by B(E, X). It is easy to see that

the subdifferential of an order-bounded convex operator has images in B(E, X).

That is why we assume T: E -» B(E, X).

Following Heinrich, Nielsen, and Olsen [7], we define a norm in B(E, X):

\\A \\m = inf {||z|| : z G X and \Ae\ < z||e|| for every e g E, \\e\\ = 1}.

It is clear that this w-norm is stronger than the usual operator norm (inherited by

L(E,X)).

Lemma 3.1 [7]. If E is a reflexive space and X and X* have weak compact intervals,

then (B(E, X), m)* = E ®mX*, where E ®mA* denotes the completion of the tensor

product E ® X* under the following crossnorm:

\\u\\m = sup{|<¿, u)\:A& B(E, X), \\A\\m < 1}

for which u g E ® A"*.

Theorem 3.2. Let E be a reflexive Banach space, X a Banach lattice such that X and

X* have weak compact intervals, and T: E -* B(E, X) a locally weak-order bounded

g.m.m. Then T is single-valued and norm-to-norm upper semicontinuous at the points

of some dense Gs subset of E.

Proof. Lemma 3.1 shows that Proposition 1.3 can be applied. Furthermore, the

arguments are the same as in the proof of Theorem 2.1.

If A is an order complete Banach lattice, it is interesting to note that the

requirement "A and X* have weak compact intervals" is equivalent to "X is an

Asplund space" (Buchvalov, Veksler, and Losanowski [4]).

Corollary 3.3. If E and X are as in Theorem 3.2 and F: E -> X is an

order-bounded convex operator, then F is generic Fréchet differentiable.

Proof. It is a direct consequence of Theorem 3.2.

4. Examples. Finally, we give some simple examples which outline the field of

application of the results. First, we note that the spaces K(E, X) and B(E, X) are

generally different. It is easy to see that B(E, X) c K(E, X) provided A has norm

compact   intervals.   The   linear   operator A:   lp^>lp   (1 < p < oo),   defined   by

A(ix, i2,...,ik,...) = (èxVi, la^.,,-»£/#*> •••)> where ('h.'h',»1?*.,,) e co\lp>

is compact but not order bounded. An example of a linear operator which belongs to
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B(E, X)\K(E, X) is the natural embedding 7: Lx[0,l] -> Lp[0,l] (1 < p < oo).

Second, we note that Corollary 3.3 gives us some new pairs of Banach spaces E and

Banach lattices X such that every order-bounded convex operator F: E —* X is

generic Fréchet differentiable. In particular, for such a pair, F is a reflexive space

and X = Lq (1 < q < oo). In this case Corollary 2.4 does not work because the

intervals of X are not compact. Conversely, if F is a reflexive space and X = lx X l2,

Corollary 2.4 works (Ahas norm compact intervals), but Corollary 3.3 does not (A"

is not Asplund). In both cases no other known results can be applied.

Remark. Instead of Theorem 1.1 we can use a theorem of Kenderov [9, Theorem

2.1]. For g.m.m. both theorems give us the same results.
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