Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On dense subsets of the measure algebra


Authors: J. Cichoń, A. Kamburelis and J. Pawlikowski
Journal: Proc. Amer. Math. Soc. 94 (1985), 142-146
MSC: Primary 04A15; Secondary 06F99, 28A05
MathSciNet review: 781072
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the minimal cardinality of a dense subset of the measure algebra is the same as the minimal cardinality of a base of the ideal of Lebesgue measure zero subsets of the real line.


References [Enhancements On Off] (What's this?)

  • [1] J. Cichoń, On bases of ideals and boolean algebras, Proc. Open Days for Model Theory and Set Theory (Jadwisin, 1981), edited by W. Guzicki, W. Marek, A. Pelc and C. Rauszer.
  • [2] J. G. Oxtoby, Measure and category, Springer, Berlin, 1970.
  • [3] Roman Sikorski, Boolean algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 25, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0126393

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A15, 06F99, 28A05

Retrieve articles in all journals with MSC: 04A15, 06F99, 28A05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1985-0781072-3
Article copyright: © Copyright 1985 American Mathematical Society