Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Solvability of differential equations with linear coefficients of nilpotent type


Author: Rainer Felix
Journal: Proc. Amer. Math. Soc. 94 (1985), 161-166
MSC: Primary 22E30; Secondary 22E25, 35A99, 46F99
DOI: https://doi.org/10.1090/S0002-9939-1985-0781075-9
MathSciNet review: 781075
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be the vector field on $ {{\mathbf{R}}^n}$ associated with a real nilpotent $ (n \times n)$-matrix. It is shown that $ L$ regarded as a differential operator defines a surjective mapping of the space $ \mathcal{S}'$ of tempered distributions onto itself; i.e. $ L\mathcal{S}'({{\mathbf{R}}^n}) = \mathcal{S}'({{\mathbf{R}}^n})$. Replacing $ \mathcal{S}'$ by the space $ \mathcal{D}'$ of ordinary distributions, this is not true in general.


References [Enhancements On Off] (What's this?)

  • [1] R. Barrà, Divergences et distributions invariantes, Thèse de $ {3^e}$ cycle, $ {n^o}$ 723, Université de Poitiers, 1978.
  • [2] Raymond Barra, Fonctions divergences et distributions invariantes, Bull. Sci. Math. (2) 105 (1981), no. 1, 49–71 (French, with English summary). MR 615290
  • [3] Raymond Barra, Fonctions divergences et distributions invariantes. II, Bull. Sci. Math. (2) 107 (1983), no. 2, 209–217 (French, with English summary). MR 704726
  • [4] -, Distributions invariantes. III, Preprint.
  • [5] Jacques Dixmier, Sur les distributions invariantes par un groupe nilpotent, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 1, A7–A10. MR 0439986
  • [6] R. Felix, Das Syntheseproblem für invariante Distributionen, Invent. Math. 65 (1981/82), no. 1, 85–96 (German). MR 636881, https://doi.org/10.1007/BF01389296
  • [7] Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736
  • [8] C. S. Herz, Analyse harmonique à plusieurs variables, Publ. Math. Orsay, 1965.
  • [9] C. S. Herz, Functions which are divergences, Amer. J. Math. 92 (1970), 641–656. MR 0290409, https://doi.org/10.2307/2373366

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E30, 22E25, 35A99, 46F99

Retrieve articles in all journals with MSC: 22E30, 22E25, 35A99, 46F99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0781075-9
Keywords: Divergences, invariant distributions, differential operators with critical points
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society