TRANSLATION-INVARIANT LINEAR FORMS
ON $L_p(G)$

JOSEPH ROSENBLATT

Abstract. Let G be a compact group such that the identity representation of G is not contained in the regular representation on $L^2(G, \lambda_G)$ of G with the discrete topology. Then any left translation invariant linear form on $L_p(G)$, $1 < p < \infty$, is continuous and must be a constant times the Haar integral. This shows that many classical matrix groups G admit only continuous left translation invariant linear forms on $L_p(G)$, $1 < p < \infty$.

Let G be a compact Hausdorff group and let λ_G be the normalized Haar measure on G. A linear form on $L_p(G)$ is a functional φ on $L_p(G)$ which is linear. Given $g \in G$ and $f \in L_p(G)$, define $gf(x) = f(g^{-1}x)$ for a.e. $x \in G$. We say that the linear form φ is invariant if $\varphi(gf) = \varphi(f)$ for all $g \in G$. Under what conditions on G is a linear form on $L_p(G)$ automatically continuous? This problem has received considerable attention for a variety of groups and function spaces. If G is a connected compact abelian group, Meisters and Schmidt [6] showed that any invariant linear form on $L_2(G)$ is continuous. This was recently extended by Bourgain [1] to $L_p(T)$, $1 < p < \infty$. On the other hand, Meisters [5] has shown that some totally-disconnected compact groups have discontinuous invariant linear forms on $L_p(G)$. The examples given here are for quite different groups than have been studied previously in this context.

We say G has the mean-zero weak containment property if for all $g_1, \ldots, g_n \in G$, and $\varepsilon > 0$, there exists $f \in L^0_2(G) = \{ f \in L_2(G) : \int f d\lambda_G = 0 \}$ such that $\| f \|_2 = 1$ and $\| g f - f \|_2 < \varepsilon$ for $i = 1, \ldots, n$. That is, the identity representation of G is contained in the regular representation on $L^2(G, \lambda_G)$ of G with the discrete topology. If G is amenable as a discrete group, then G has this property. On the other hand, if G contains a dense discrete subgroup with Kazhdan’s property T, then G does not have the mean-zero weak containment property. Recently, in solving the Banach-Ruziewicz problem for S^2 and S^3, V. G. Drinfeld [3] has shown that $\text{SO}(3)$ and $\text{SO}(4)$ do not have the mean-zero weak containment property. This, together with Margulis [4], shows that $\text{SO}(n)$, $n \geq 3$, does not have the mean-zero weak containment property. Moreover, it follows from [3, 4] that any compact simple Lie group does not have the mean-zero weak containment property. See [2, 7] for a
discussion of this property and its relationship to the uniqueness of invariant means on \(L_\infty(G) \).

Lemma. Suppose \(G \) does not have the mean-zero weak containment property. Then there exists \(g_1, \ldots, g_n \in G \) such that for some \(\delta_p < 1 \) and any \(f \in L_p^0(G) \), \(1 < p < \infty \), we have

\[
\left\| \frac{1}{n+1} \left(f + \sum_{i=1}^n \delta_{g_i} f \right) \right\|_p \leq \delta_p \|f\|_p.
\]

Proof. Let \(\mu = (1/(n+1))(\delta_e + \sum_{i=1}^n \delta_{g_i}) \) where \(e \) is the identity in \(G \) and \(\delta_g \), \(g \in G \), denotes the Dirac mass measure at \(g \). Then \(\mu \) acts by convolution on \(L_p^0(G) \) with \(\|\mu\|_{L_p^0} \leq 1 \). Suppose \(\|\mu\|_{L_p^0} = 1 \). Then there exists a sequence \((f_m) \subset L_0^0(G) \) such that \(\|f_m\|_2 = 1 \) for all \(m \geq 1 \), and \(\lim_{m \to \infty} \|\mu \ast f_m\|_2 = 1 \). It is easy to show, as in [2, Theorem 1.1], that this forces

\[
\lim_{m \to \infty} \left\| g, f_m - f_m \right\|_2 = 0 \quad \text{for each } i = 1, \ldots, n.
\]

So if \(G \) does not have the mean-zero weak containment property, there exists \(\mu \) as above with \(\|\mu\|_{L_p^0} < 1 \). An interpolation argument as in [8] shows \(\|\mu\|_{L_p^0} < 1 \) for all \(p \), \(1 < p < \infty \). \(\square \)

Proposition. Suppose \(G \) does not have the mean-zero weak containment property. Then there exists \(g_1, \ldots, g_n \in G \) such that for every \(f \in L_p(G) \), \(1 < p < \infty \), there exists \(h \in L_0^0(G) \) such that

\[
f = \left(\int d\lambda_G \right) 1_G + \sum_{i=1}^n (h - g_i h).
\]

Proof. Let \(\mu \) be as in the proof of the lemma. Denote by \(\mu^n, n \geq 1 \), the \(n \)-th-convolution power of \(\mu \), and let \(\mu^0 = \delta_e \). Let \(f_0 \in L^0_p(G) \). Since \(\|\mu\|_{L_p^0} < 1 \), the series \(k = \sum_{n=1}^\infty \mu^n \ast f_0 \) converges in \(L_p^0(G) \). Also, \(k - \mu \ast k = \mu^0 \ast \mu \ast f_0 = f_0 \). If \(h = k/(n+1) \), then

\[
f_0 = f_0 = f - (f \ast d\lambda_G) 1_G = f_0.
\]

If \(f \in L_p(G) \), let \(f_0 = f - (f \ast d\lambda_G) 1_G \) to get the representation of the proposition. \(\square \)

Theorem. Suppose \(G \) does not have the mean-zero weak containment property. Then there exists \(g_1, \ldots, g_n \in G \) such that any linear form on \(L_p(G) \), \(1 < p < \infty \), invariant under \(g_1, \ldots, g_n \) must be continuous and therefore a scalar times the Haar integral.

Proof. Let \(g_1, \ldots, g_n \in G \) as in the proposition. Let \(\phi \) be a linear form invariant under \(g_1, \ldots, g_n \). Then, using the representation of the proposition, \(\phi(f) = \phi(1_G) \int \ast d\lambda_G \). \(\square \)

Remark 1. Suppose \(G \) is abelian and \(H \) is a countable subgroup of \(G \). Then [8, Theorem 14] shows that

\[
S = \text{span} \{ g, f - f : g \in H, f \in L_p(G) \}, \quad 1 < p < \infty.
\]
is not closed. Hence, there exists discontinuous H invariant linear forms on $L_p(G)$, $1 < p < \infty$. This shows that the result of Meisters and Schmidt [6] requires the full invariance under G, and contrasts the result above with previous results in that the invariance hypothesis is weakened.

Remark 2. A theorem similar to the above is true for an ergodic group action on a probability space where the action does not have the mean-zero weak containment property. See Proposition 11 and the remarks after Proposition 13 in [8]. For example, let φ be a linear form on $L_p(T^2)$, $1 < p < \infty$, where T denotes the circle group. Let $\tau_1, \tau_2 : T^2 \to T^2$ be defined by $\tau_1(z_1, z_2) = (z_2, z_1)$, $\tau_2(z_1, z_2) = (z_1z_2, z_2)$ for all $z_1, z_2 \in T$. If φ is a linear form on $L_p(T^2)$, $1 < p < \infty$, such that $\varphi(f \circ \tau_i) = \varphi(f)$ for all $f \in L_p(T^2)$ and $i = 1, 2$, then φ is continuous and a scalar times the Haar integral.

References

Department of Mathematics, Ohio State University, Columbus, Ohio 43210