Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Minimal solutions of the heat equation and uniqueness of the positive Cauchy problem on homogeneous spaces

Authors: A. Korányi and J. C. Taylor
Journal: Proc. Amer. Math. Soc. 94 (1985), 273-278
MSC: Primary 58G11; Secondary 35K05, 43A85
MathSciNet review: 784178
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The minimal positive solutions of the heat equation on $ X \times ( - \infty ,T)$ are determined for $ X$ a homogeneous Riemannian space. A simple proof of uniqueness for the positive Cauchy problem on a homogeneous space is given using Choquet's theorem and the explicit form of these solutions.

References [Enhancements On Off] (What's this?)

  • [1] Shmuel Agmon, On positive solutions of elliptic equations with periodic coefficients in 𝑅ⁿ, spectral results and extensions to elliptic operators on Riemannian manifolds, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 7–17. MR 799327, 10.1016/S0304-0208(08)73672-7
  • [2] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 607–694. MR 0435594
  • [3] Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), no. 1, 15–53. MR 658471
  • [4] Corneliu Constantinescu and Aurel Cornea, Potential theory on harmonic spaces, Springer-Verlag, New York-Heidelberg, 1972. With a preface by H. Bauer; Die Grundlehren der mathematischen Wissenschaften, Band 158. MR 0419799
  • [5] J. L. Doob, Relative limit theorems in analysis, J. Analyse Math. 8 (1960/1961), 289–306. MR 0125974
  • [6] Avner Friedman, On the uniqueness of the Cauchy problem for parabolic equations, Amer. J. Math. 81 (1959), 503–511. MR 0104907
  • [7] Y. Guivarc'h, Sur le représentation intégrale des fonctions harmoniques et des fonctions propres positives dans un éspace Riemannien symetrique, Bull. Sci. Math. (to appear).
  • [8] F. I. Karpelevič, The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math. Soc. 1965 (1967), 51–199. Amer. Math. Soc., Providence, R.I., 1967. MR 0231321
  • [9] Adam Korányi and J. C. Taylor, Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27 (1983), no. 1, 77–93. MR 684542
  • [10] N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790
  • [11] Bernard Mair and J. C. Taylor, Integral representation of positive solutions of the heat equation, Théorie du potentiel (Orsay, 1983) Lecture Notes in Math., vol. 1096, Springer, Berlin, 1984, pp. 419–433. MR 890370, 10.1007/BFb0100123
  • [12] Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 0159139
  • [13] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
  • [14] Neil S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205–226. MR 0226168

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G11, 35K05, 43A85

Retrieve articles in all journals with MSC: 58G11, 35K05, 43A85

Additional Information

Keywords: Heat equation, minimal solutions, Cauchy problem, homogeneous space, bounded geometry
Article copyright: © Copyright 1985 American Mathematical Society