Sturmian theorems for second order systems

Author:
W. Allegretto

Journal:
Proc. Amer. Math. Soc. **94** (1985), 291-296

MSC:
Primary 35B05; Secondary 35J45

MathSciNet review:
784181

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sturmian theorem are established for weakly coupled elliptic systems generated in a bounded domain by the expressions , and Dirichlet boundary conditions. Here denotes the Laplace operator, and are matrices. We do not assume that are symmetric, but instead essentially require irreducible and . Estimates on the real eigenvalue of , with a positive eigenvector are then obtained as applications. Our results are motivated by recent theorems for ordinary differential equations established by Ahmad, Lazer and Dannan.

**[1]**Shair Ahmad and A. C. Lazer,*An 𝑁-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems*, SIAM J. Math. Anal.**9**(1978), no. 6, 1137–1150. MR**512517**, 10.1137/0509092**[2]**Shair Ahmad and Alan C. Lazer,*A new generalization of the Sturm comparison theorem to selfadjoint systems*, Proc. Amer. Math. Soc.**68**(1978), no. 2, 185–188. MR**0470327**, 10.1090/S0002-9939-1978-0470327-4**[3]**W. Allegretto,*A comparison theorem for nonlinear operators*, Ann. Scuola Norm. Sup. Pisa (3)**25**(1971), 41–46. MR**0298181****[4]**W. Allegretto,*Positive solutions and spectral properties of second order elliptic operators*, Pacific J. Math.**92**(1981), no. 1, 15–25. MR**618041****[5]**Fozi M. Dannan,*Sturmian theory and disconjugacy of second order systems*, Proc. Amer. Math. Soc.**90**(1984), no. 4, 563–566. MR**733406**, 10.1090/S0002-9939-1984-0733406-2**[6]**Avner Friedman,*Partial differential equations*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR**0445088****[7]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. MR**0473443****[8]**M. A. Krasnosel′skiĭ,*Positive solutions of operator equations*, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. MR**0181881****[9]**K. Kreith,*Oscillation theory*, Lecture Notes in Math., vol. 324, Springer-Verlag, 1973.**[10]**Olga A. Ladyzhenskaya and Nina N. Ural′tseva,*Linear and quasilinear elliptic equations*, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR**0244627****[11]**M. H. Protter,*The generalized spectrum of second-order elliptic systems*, Rocky Mountain J. Math.**9**(1979), no. 3, 503–518. MR**528748**, 10.1216/RMJ-1979-9-3-503**[12]**C. A. Swanson,*Comparison and oscillation theory of linear differential equations*, Academic Press, New York-London, 1968. Mathematics in Science and Engineering, Vol. 48. MR**0463570****[13]**Charles A. Swanson,*Picone’s identity*, Rend. Mat. (6)**8**(1975), no. 2, 373–397 (English, with Italian summary). Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday, II. MR**0402188****[14]**C. A. Swanson,*A dichotomy of PDE Sturmian theory*, SIAM Rev.**20**(1978), no. 2, 285–300. MR**0466896****[15]**R. Vyborny,*Continuous dependence of eigenvalues on the domain*, Lecture Ser. No. 42, Institute for Fluid Dynamics and Applied Mathematics, Univ. of Maryland, 1964.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35B05,
35J45

Retrieve articles in all journals with MSC: 35B05, 35J45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0784181-8

Keywords:
Sturmian theorem,
elliptic system,
eigenvalue,
positive operator

Article copyright:
© Copyright 1985
American Mathematical Society