Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal disks and compact hypersurfaces in Euclidean space


Authors: John Douglas Moore and Thomas Schulte
Journal: Proc. Amer. Math. Soc. 94 (1985), 321-328
MSC: Primary 53C40; Secondary 53C42
DOI: https://doi.org/10.1090/S0002-9939-1985-0784186-7
MathSciNet review: 784186
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {M^n}$ be a smooth connected compact hypersurface in $ (n + 1)$-dimensional Euclidean space $ {E^{n + 1}}$, let $ {A^{n + 1}}$ be the unbounded component of $ {E^{n + 1}} - {M^n}$, and let $ {\kappa _1} \leqslant {\kappa _2} \leqslant \cdots \leqslant {\kappa _n}$ be the principal curvatures of $ {M^n}$ with respect to the unit normal pointing into $ {A^{n + 1}}$. It is proven that if $ {\kappa _2} + \cdots + {\kappa _n} < 0$, then $ {A^{n + 1}}$ is simply connected.


References [Enhancements On Off] (What's this?)

  • [C] R. Courant, The existence of a minimal surface of least area bounded by prescribed Jordan arcs and prescribed surfaces, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 97-101.
  • [CD] R. Courant and N. Davids, Minimal surfaces spanning closed manifolds, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 194-199. MR 0001472 (1:244d)
  • [HW] R. Howard and H. Wei, On the existence and nonexistence of stable submanifolds and currents in positively curved manifolds and the topology of submanifolds in Euclidean spaces (to appear).
  • [J] W. Jäger, Behavior of minimal surfaces with free boundaries, Comm. Pure Appl. Math. 23 (1970), 803-818. MR 0266067 (42:976)
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vols. I, II, Wiley, New York, 1963, 1969. MR 1393940 (97c:53001a)
  • [L] H. B. Lawson, Lectures on minimal submanifolds, Vol. 1, Publish or Perish, Berkeley, Calif., 1980.
  • [MY] W. H. Meeks, III, and S. T. Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980), 441-484. MR 595203 (83d:53045)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40, 53C42

Retrieve articles in all journals with MSC: 53C40, 53C42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0784186-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society