Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Minimal disks and compact hypersurfaces in Euclidean space

Authors: John Douglas Moore and Thomas Schulte
Journal: Proc. Amer. Math. Soc. 94 (1985), 321-328
MSC: Primary 53C40; Secondary 53C42
MathSciNet review: 784186
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {M^n}$ be a smooth connected compact hypersurface in $ (n + 1)$-dimensional Euclidean space $ {E^{n + 1}}$, let $ {A^{n + 1}}$ be the unbounded component of $ {E^{n + 1}} - {M^n}$, and let $ {\kappa _1} \leqslant {\kappa _2} \leqslant \cdots \leqslant {\kappa _n}$ be the principal curvatures of $ {M^n}$ with respect to the unit normal pointing into $ {A^{n + 1}}$. It is proven that if $ {\kappa _2} + \cdots + {\kappa _n} < 0$, then $ {A^{n + 1}}$ is simply connected.

References [Enhancements On Off] (What's this?)

  • [C] R. Courant, The existence of a minimal surface of least area bounded by prescribed Jordan arcs and prescribed surfaces, Proc. Nat. Acad. Sci. U.S.A. 24 (1938), 97-101.
  • [CD] R. Courant and N. Davids, Minimal surfaces spanning closed manifolds, Proc. Nat. Acad. Sci. U. S. A. 26 (1940), 194–199. MR 0001472
  • [HW] R. Howard and H. Wei, On the existence and nonexistence of stable submanifolds and currents in positively curved manifolds and the topology of submanifolds in Euclidean spaces (to appear).
  • [J] Willi Jäger, Behavior of minimal surfaces with free boundaries, Comm. Pure Appl. Math. 23 (1970), 803–818. MR 0266067,
  • [KN] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
  • [L] H. B. Lawson, Lectures on minimal submanifolds, Vol. 1, Publish or Perish, Berkeley, Calif., 1980.
  • [MY] William H. Meeks III and Shing Tung Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980), no. 3, 441–484. MR 595203,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40, 53C42

Retrieve articles in all journals with MSC: 53C40, 53C42

Additional Information

Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society