Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Equivariant $ K$-theory and representations of Hecke algebras


Author: George Lusztig
Journal: Proc. Amer. Math. Soc. 94 (1985), 337-342
MSC: Primary 22E50; Secondary 11S37, 16A64, 18F25, 20G05
DOI: https://doi.org/10.1090/S0002-9939-1985-0784189-2
MathSciNet review: 784189
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct some representations of the Hecke algebra of an affine Weyl group using equivariant $ K$-theory and state a conjecture on some $ q$-analogs of the Springer representations.


References [Enhancements On Off] (What's this?)

  • [1] M. Demazure, Une nouvelle formule des caractères, Bull. Soc. Math. France (2) 98 (1974), 163-172. MR 0430001 (55:3009)
  • [2] G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, Calif., 1965. MR 0207883 (34:7696)
  • [3] G. Lusztig, Some examples of square integrable representations of semisimple $ p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623-653. MR 694380 (84j:22023)
  • [4] G. Segal, Equivariant $ K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151. MR 0234452 (38:2769)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E50, 11S37, 16A64, 18F25, 20G05

Retrieve articles in all journals with MSC: 22E50, 11S37, 16A64, 18F25, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0784189-2
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society