Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A common fixed-point theorem in reflexive locally uniformly convex Banach spaces


Authors: Michael Edelstein and Mo Tak Kiang
Journal: Proc. Amer. Math. Soc. 94 (1985), 411-415
MSC: Primary 47H10; Secondary 54H25
DOI: https://doi.org/10.1090/S0002-9939-1985-0787883-2
MathSciNet review: 787883
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a reflexive locally uniformly convex Banach space and $ G$ an ultimately nonexpansive commutative semigroup of continuous self-maps of $ X$. If there exists a point $ x$ in $ X$ recurrent under $ G$ such that $ G(x)$ is bounded, then $ G$ has a common fixed point in $ \overline {{\text{co}}} (G(x))$. If $ X$ is a Hilbert space then there is exactly one such point in $ \overline {{\text{co}}} (G(x))$.


References [Enhancements On Off] (What's this?)

  • [1] J. Diestel. Geometry of Banach spaces--selected topics, Springer-Verlag, 1975. MR 0461094 (57:1079)
  • [2] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1967.
  • [3] M. Edelstein, A fixed point property of reflexive locally uniformly convex Banach spaces, Math. Rep. Acad. Sci. Roy. Soc. Canada 6 (1984), 189-192. MR 751832 (85m:47060)
  • [4] M. Edelstein and M. T. Kiang, On ultimately nonexpansive semigroups, Pacific J. Math. 100 (1982), 100-110. MR 671841 (83k:47039)
  • [5] R. D. Holmes and P. P. Narayanaswami, On asymptotically nonexpansive semigroups of mappings, Canad. Math. Bull. 13 (1970), 209-214. MR 0266188 (42:1096)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 54H25

Retrieve articles in all journals with MSC: 47H10, 54H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0787883-2
Keywords: Ultimately nonexpansive semigroup, recurrence, common fixed point, isometry, affine isometry
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society