An extremal problem for polynomials with nonnegative coefficients

Author:
Gradimir V. Milovanović

Journal:
Proc. Amer. Math. Soc. **94** (1985), 423-426

MSC:
Primary 26C05; Secondary 41A17

MathSciNet review:
787886

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the set of all algebraic polynomials of exact degree whose coefficients are all nonnegative. For the norm in with generalized Laguerre weight function , the extremal problem is solved, which completes a result of A. K. Varma [**7**].

**[1]**P. Erdös,*On extremal properties of the derivatives of polynomials*, Ann. of Math. (2)**41**(1940), 310–313. MR**0001945****[2]**G. G. Lorentz,*The degree of approximation by polynomials with positive coefficients*, Math. Ann.**151**(1963), 239–251. MR**0155135****1.**G. G. Lorentz,*Derivatives of polynomials with positive coefficients*, J. Approximation Theory**1**(1968), 1–4. MR**0231957****[4]**A. A. Markov,*On a problem of D. I. Mendeleev*, Izv. Akad. Nauk SSSR Ser. Mat.**62**(1889), 1-24.**[5]**Gábor Szegö,*On some problems of approximations*, Magyar Tud. Akad. Mat. Kutató Int. Közl.**9**(1964), 3–9 (English, with Russian summary). MR**0173895****[6]**P. Turán,*Remark on a theorem of Erhard Schmidt*, Mathematica (Cluj)**2 (25)**(1960), 373–378. MR**0132963****[7]**A. K. Varma,*Derivatives of polynomials with positive coefficients*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 107–112. MR**619993**, 10.1090/S0002-9939-1981-0619993-0**[8]**A. K. Varma,*Some inequalities of algebraic polynomials having real zeros*, Proc. Amer. Math. Soc.**75**(1979), no. 2, 243–250. MR**532144**, 10.1090/S0002-9939-1979-0532144-7**[9]**A. K. Varma,*An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside [-1,+1]*, Proc. Amer. Math. Soc.**55**(1976), no. 2, 305–309. MR**0396878**, 10.1090/S0002-9939-1976-0396878-7**[10]**A. K. Varma,*An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside [-1,+1]. II*, Proc. Amer. Math. Soc.**69**(1978), no. 1, 25–33. MR**0473124**, 10.1090/S0002-9939-1978-0473124-9

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26C05,
41A17

Retrieve articles in all journals with MSC: 26C05, 41A17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0787886-8

Article copyright:
© Copyright 1985
American Mathematical Society