AN EXTREMAL PROBLEM FOR POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS

GRADIMIR V. MILOVANOVIĆ

Abstract. Let W_n be the set of all algebraic polynomials of exact degree n whose coefficients are all nonnegative. For the norm in $L^2[0, \infty)$ with generalized Laguerre weight function $w(x) = x^a e^{-x}$ ($a > -1$), the extremal problem $C_n(a) = \sup_{P \in W_n} \left(\| P' \| / \| P \| \right)^2$ is solved, which completes a result of A. K. Varma [7].

1. In this paper we give the complete solution of a problem which has been investigated recently by A. K. Varma (see [7, 8]). This problem is related to some previous integral inequalities of Varma [9, 10] and also to the classical inequalities of A. Markov [4], P. Erdős [1], G. G. Lorentz [2, 3], G. Szegö [5], and P. Turan [6].

Let W_n be the set of all algebraic polynomials of exact degree n, all coefficients of which are nonnegative, i.e.,

$$W_n = \left\{ P_n | P_n(x) = \sum_{k=0}^{n} a_k x^k, a_k \geq 0 \ (k = 0, 1, \ldots, n) \right\}.$$

We denote by W_n^0 the subset of W_n for which $a_0 = 0$ (i.e., $P_n(0) = 0$).

Let $w(x) = x^a e^{-x}$ ($a > -1$) be a weight function on $[0, \infty)$, and let $\| f \|^2 = (f, f)$, where

$$(f, g) = \int_{0}^{\infty} w(x) f(x) g(x) \, dx \quad (f, g \in L^2[0, \infty)).$$

In [7] Varma has investigated the problem of determining the best constant in the inequality

$$(1.1) \quad \| P_n' \|^2 \leq C_n(a) \| P_n \|^2,$$

where $P_n \in W_n$. In fact, he has proved

Theorem A. Let $P_n(x)$ be an algebraic polynomial of exact degree n with nonnegative coefficients. Then for $\alpha \geq (\sqrt{5} - 1)/2$,

$$\int_{0}^{\infty} \left(P_n'(x) \right)^2 x^a e^{-x} \, dx \leq \frac{n^2}{(2n + \alpha)(2n + \alpha - 1)} \int_{0}^{\infty} P_n^2(x) x^a e^{-x} \, dx,$$

equality holding for $P_n(x) = x^n$. For $0 \leq \alpha \leq 1/2$ we have

$$(1.2) \quad \int_{0}^{\infty} \left(P_n'(x) \right)^2 x^a e^{-x} \, dx \leq \frac{1}{(2 + \alpha)(1 + \alpha)} \int_{0}^{\infty} P_n^2(x) x^a e^{-x} \, dx.$$

Received by the editors March 29, 1984.
1980 Mathematics Subject Classification. Primary 26C05, 41A44.
Moreover, (1.2) is also best possible in the sense that for \(P_n(x) = x^n + \lambda x \) the expression on the left can be made arbitrarily close to the expression on the right by choosing \(\lambda \) positive and sufficiently large.

The case \(\alpha = 1 \) was considered in [8]. The cases \(\alpha \in (-1, 0) \) and \(\alpha \in (1/2, (\sqrt{5} - 1)/2) \) are still open.

2. The object of this paper is to determine

\[
(2.1) \quad C_n(\alpha) = \sup_{P_n \in W_n} \frac{\|P_n\|^2}{\|P_n\|^2}
\]

for all \(\alpha \in (-1, \infty) \) and, thus, to give a complete solution of the extremal problem (1.1). Note that the supremum in (2.1) is attained for some \(P_n \in W_n^0 \). Indeed,

\[
\sup_{P_n \in W_n} \frac{\|P_n\|^2}{\|P_n\|^2} = \sup_{P_n \in W_n^0} \frac{\|P_n\|^2}{\|P_n + a_0\|^2} = \sup_{P_n \in W_n^0} \frac{\|P_n\|^2}{\|P_n\|^2}.
\]

We begin by proving three lemmas:

Lemma 1. If \(P_n \in W_n \) then for every \(x \geq 0 \) the inequality

\[
(2.2) \quad x\left(P_n'(x)^2 - P_n(x)P_n''(x)\right) \leq P_n'(x)P_n(x)
\]

holds.

Proof. Let \(P_n \in W_n \), i.e., \(P_n(x) = \sum_{k=0}^{n} a_k x^k \) with \(a_k \geq 0 \) (\(k = 0, 1, \ldots, n \)). Using the Cauchy-Schwarz inequality

\[
\left(\sum_{k=0}^{n} x_k y_k \right)^2 \leq \left(\sum_{k=0}^{n} |x_k|^2 \right) \left(\sum_{k=0}^{n} |y_k|^2 \right)
\]

for \(x_k = a_k^{1/2} x^{k/2} \) and \(y_k = k a_k^{1/2} x^{k/2} (x \geq 0) \), we obtain

\[
\left(\sum_{k=0}^{n} k a_k x^k \right) \leq \left(\sum_{k=0}^{n} a_k x^k \right) \left(\sum_{k=0}^{n} k^2 a_k x^k \right),
\]

which is equivalent to (2.2). \(\square \)

Lemma 2. If \(P_n \in W_n^0 \), then for the integrals

\[
J_n(\alpha) = \int_{0}^{\infty} x^{\alpha} e^{-x} P_n'(x)^2 dx,
\]

\[
I_n(i)(\alpha) = \int_{0}^{\infty} x^{\alpha} e^{-x} P_n(x) P_n^{(i)}(x) dx \quad (i = 0, 1, 2)
\]

the following recurrence relations hold:

\[
I_{n,2}(\alpha) = I_{n,1}(\alpha) - \alpha I_{n,1}(\alpha - 1) - J_n(\alpha) \quad (\alpha > -1),
\]

\[
2I_{n,1}(\alpha) = I_{n,0}(\alpha) - \alpha I_{n,0}(\alpha - 1) \quad (\alpha > -2).
\]

The proof of this lemma is a simple application of integration by parts and will be omitted. We note that the integrals \(I_{n,1}(\alpha) \) and \(I_{n,0}(\alpha - 1) \) exist for \(\alpha > -2 \) because \(P_n(0) = 0 \).
From Lemmas 1 and 2 there immediately follows

Lemma 3. If $P_n \in W_n^0$, then for $\alpha > -1$,

$$ J_n(\alpha) \leq \frac{1}{4} \left\{ I_{n,0}(\alpha) + (1 - 2\alpha)I_{n,0}(\alpha - 1) + (\alpha - 1)^2I_{n,0}(\alpha - 2) \right\}. $$

Theorem. The best constant $C_n(\alpha)$ defined in (2.1) is

$$ C_n(\alpha) = \begin{cases} \frac{1}{2 + \alpha}(1 + \alpha) & (-1 < \alpha \leq \alpha_n), \\ \frac{n^2}{2n + \alpha}(2n + \alpha - 1) & (\alpha_n \leq \alpha < +\infty), \end{cases} $$

where

$$ \alpha_n = \frac{1}{2}(n + 1)^{-1}\left[(17n^2 + 2n + 1)^{1/2} - 3n + 1\right]. $$

Proof. Let $P_n \in W_n^0$, i.e., $P_n(x) = \sum_{k=1}^n a_k x^k (a_k \neq 0)$. Then

$$ P_n(x)^2 = \sum_{k=2}^{2n} b_k x^k \quad (b_k \neq 0) $$

and

$$ \|P_n\|^2 = I_{n,0}(\alpha) = \sum_{k=2}^{2n} b_k \Gamma(k + \alpha + 1), $$

where Γ is the gamma function. Using Lemma 3 we obtain

$$ 4J_n(\alpha) \leq \sum_{k=2}^{2n} b_k \left\{ \Gamma(k + \alpha + 1) + (1 - 2\alpha)\Gamma(k + \alpha) + (\alpha - 1)^2\Gamma(k + \alpha - 1) \right\}, $$

i.e.,

$$ J_n(\alpha) \leq \sum_{k=2}^{2n} H_k(\alpha) b_k \Gamma(k + \alpha + 1), $$

where

$$ H_k(\alpha) = \frac{1}{4} \cdot k^2/(k + \alpha)(k + \alpha - 1). $$

From (2.5) it follows that

$$ \|P_n\|^2 \leq \left(\max_{2 \leq k \leq 2n} H_k(\alpha) \right)\|P_n\|^2, $$

so

$$ C_n(\alpha) \leq \max_{2 \leq k \leq 2n} H_k(\alpha). $$

Determining the maximum of $f(x) = x^2/(x + \alpha)(x + \alpha - 1)$ on the interval $[2, 2n]$, we find that

$$ \max_{2 \leq k \leq 2n} H_k(\alpha) = \begin{cases} H_2(\alpha) & \text{if } -1 < \alpha \leq \alpha_n, \\ H_{2n}(\alpha) & \text{if } \alpha_n \leq \alpha < +\infty, \end{cases} $$

where α_n is given by (2.4).
In order to show that \(C_n(\alpha) \) defined in (2.3) is best possible, i.e. that \(C_n(\alpha) = \max_{2 \leq k \leq 2n} H_k(\alpha) \), we consider \(\hat{P}_n(x) = x^n + \lambda x \ (\lambda \geq 0) \) and set
\[
Q_n(\lambda) = \frac{\|\hat{P}_n\|^2}{\|\hat{P}_n\|^2}.
\]
By a simple computation we find that
\[
Q_n(\lambda) = \frac{n^2 \Gamma(2n + \alpha - 1) + 2\lambda n \Gamma(n + \alpha)}{\Gamma(2n + \alpha + 1) + 2\lambda \Gamma(n + \alpha + 2)}.
\]
Since
\[
Q_n(0) = \frac{n^2}{(2n + \alpha)(2n + \alpha - 1)} = H_z(\alpha)
\]
and
\[
\lim_{\lambda \to \infty} Q_n(\lambda) = \frac{1}{(\alpha + 1)(\alpha + 2)} = H_2(\alpha),
\]
we conclude that \(\hat{P}_n(x) = x^n \) is an extremal polynomial for \(\alpha \geq \alpha_n \). Furthermore, if \(-1 < \alpha \leq \alpha_n \), there exists a sequence of polynomials, for example, \(p_{n,k}(x) = x^n + kx \), \(k = 1, 2, \ldots \), for which
\[
\lim_{k \to \infty} \frac{\|p'_{n,k}\|^2}{\|p_{n,k}\|^2} = C_n(\alpha). \quad \Box
\]

Remark. From (2.4) we have \(\alpha_1 = (\sqrt{5} - 1)/2 \), \(\alpha_2 = (\sqrt{73} - 5)/6 \), \(\alpha_3 = (\sqrt{10} - 2)/2 \), etc. The sequence \((\alpha_k) \) is decreasing, i.e., \(\alpha_1 > \alpha_2 > \alpha_3 > \cdots > \alpha_\infty \), where \(\alpha_\infty = \lim_{n \to \infty} \alpha_n = (\sqrt{17} - 3)/2 \approx 0.56155 \).

Acknowledgment. The author is grateful to Professor W. Gautschi for his careful reading of the paper and useful suggestions for better and more complete formulations of the material.

References

Faculty of Electronic Engineering, Department of Mathematics, University of Niš, Beogradska 14, P. O. Box 73 18000 Niš, Yugoslavia